在职研究生考试数学测试练习题
微积分
(1)设y(x)是微分方程y???(x?1)y??x2y?ex的满足y(0)?0,y?(0)?1的解,则
x(A)等于0.
x?0limy(x)?x2()
(B)等于1.
(C)等于2.
(D)不存在.
解limx?0y(x)?xy?(x)?1y??(x)1?lim?lim?y??(0), 2x?0x?0x2x222将x?0代入方程,得y??(0)?(x?1)y?(0)?xy(0)?1,又y(0)?0,y?(0)?1,故y??(0)?2, 所以limx?0y(x)?x?1,选择B. x2?f(x,y)?f(x,y)?0,则保证不等式f(x1,y1)?f(x2,y2)成立?0,
?y?x(2)设在全平面上有的条件是()
(A)x1?x2,y1?y2. (C)x1?x2,y1?y2. 解
(B)x1?x2,y1?y2. (D)x1?x2,y1?y2.
?f(x,y)?0?f(x,y)关于x单调减少, ?x?f(x,y)?0?f(x,y)关于y单调增加, ?y当x1?x2,y1?y2时,f(x1,y1)?f(x2,y1)?f(x2,y2),选择A.
(3)设f(x)在(??,??)存在二阶导数,且f(x)??f(?x),当x?0时有f?(x)?0,
f??(x)?0,则当x?0时有()
(A)f?(x)?0,f??(x)?0. (B)f?(x)?0,f??(x)?0. (C)f?(x)?0,f??(x)?0. (D)f?(x)?0,f??(x)?0. 解【利用数形结合】
f(x)为奇函数,当x?0时,f(x)的图形为递减的凹曲线,当x?0时,f(x)的图形为
递减的凸曲线,选择D.
(4)设函数f(x)连续,且f?(0)?0,则存在??0,使得()
1
(A)在(0,?)内单调增加 (B)在(??,0)内单调减少
(C)对任意的x?(0,?),有f(x)?f(0) (D)对任意的x?(??,0),有f(x)?f(0)
f(x)?f(0)?0,
x?0xf(x)?f(0)由极限的的保号性,在此邻域内,所以对任意的x?(??,0),?U(0,?),?0,
x解【利用导数的定义和极限的保号性】f?(0)?lim有f(x)?f(0),选择D.
f(x)?(5) 函数
|x|sin(x?2)x(x?1)(x?2)2在下列哪个区间内有界.
(A) (?1 , 0). [ A ]
【分析】如函数f (x)
在(a , b)内有界.
(B) (0 , 1). (C) (1 , 2). (D) (2 , 3).
?f (x)在(a , b)内连续,且极限x?alimf(x)?与x?blimf(x)存在,则
【详解】当x ? 0 , 1 , 2时,f (x)连续,而x??1limf(x)??sin24,
limf(x)???sin318,
x?0?x?0?limf(x)?sin2limf(x)??limf(x)??4,x?1,x?2,
所以,函数f (x)在(?1 , 0)内有界,故选(A).
【评注】一般地,如函数f (x)在闭区间[a , b]上连续,则f (x)在闭区间[a , b]上有界;如函数f (x)在开区间(a , b)内连续,且极限x?ax?b?limf(x)?与
limf(x)存在,则函数f (x)在开区间(a , b)内有界.
limf(x)?a(6)设f (x)在(?? , +?)内有定义,且x??,
1
1??f(),x?0g(x)??x??0,x?0,则
(A) x = 0必是g(x)的第一类间断点. 断点.
(C) x = 0必是g(x)的连续点.
(B) x = 0必是g(x)的第二类间
(D) g(x)在点x = 0处的连续性与a的取值有关.
[ D ]
【分析】考查极限x?0元
u?1x,
limg(x)是否存在,如存在,是否等于g(0)即可,通过换
可将极限x?0limg(x)转化为x??limf(x).
11limg(x)?limf()?limf(u)u?x?0u??xx),又g(0) = 0,【详解】因为x?0= a(令
所以,
当a = 0时,x?0limg(x)?g(0),即g(x)在点x = 0处连续,当a ? 0时,
x?0limg(x)?g(0),即x = 0是g(x)的第一类间断点,因此,g(x)在点x = 0
处的连续性
与a的取值有关,故选(D).
【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.
(7) 设f (x) = |x(1 ? x)|,则
(A) x = 0是f (x)的极值点,但(0 , 0)不是曲线y = f (x)的拐点. (B) x = 0不是f (x)的极值点,但(0 , 0)是曲线y = f (x)的拐点. (C) x = 0是f (x)的极值点,且(0 , 0)是曲线y = f (x)的拐点.
1