¿Îʱ´ï±êѵÁ·£¨¶þÊ®£©
Ò»¡¢Ñ¡ÔñÌâ
1£®ÏÂÁк¯ÊýÓÐÁ½¸öÁãµãµÄÊÇ( ) A£®y£½x£«1 B£®y£½x£«2x£«3 C£®y£½2log2x D£®y£½?
?x£2 012£¬x£¾0£¬?
??x£¬x¡Ü0
32
2£®(ÖØÇì¸ß¿¼)Èôa
A£®(a£¬b) ºÍ(b£¬c)ÄÚ B£®(£¡Þ£¬a)ºÍ(a£¬b)ÄÚ C£®(b£¬c)ºÍ(c£¬£«¡Þ)ÄÚ D£®(£¡Þ£¬a) ºÍ(c£¬£«¡Þ)ÄÚ
2
3£®º¯Êýf(x)£½ln(x£«1)£µÄÁãµãËùÔڵĴóÖÂÇø¼äÊÇ ( )
xA£®(0,1) B£®(1,2) C£®(2£¬e) D£®(3,4)
4£®Èô·½³Ì|ax|£½x£«a(a£¾0)ÓÐÁ½¸ö½â£¬ÔòaµÄȡֵ·¶Î§ÊÇ ( ) A£®(1£¬£«¡Þ) B£®(0,1) C£®(0£¬£«¡Þ) D£®? ¶þ¡¢Ìî¿ÕÌâ
5£®Óöþ·Ö·¨Çó·½³Ìx£2x£5£½0ÔÚÇø¼ä[2,3]ÄÚµÄʵ¸ù£¬È¡Çø¼äÖеãΪx0£½2.5£¬ÄÇôÏÂÒ»¸öÓиùµÄÇø¼äÊÇ________£®
6£®·½³Ì2£«x£½3µÄʵÊý½âµÄ¸öÊýΪ________£®
?3£¬x¡Ü1£¬?
7£®ÒÑÖªº¯Êýf(x)£½?
??£x£¬x£¾1£¬
x£x2
3
Ôòº¯Êýy£½f(x)£2µÄÁãµãÊÇ________£®
8£®ÒÑÖªy£½x(x£1)¡¤(x£«1)µÄͼÏñÈçͼËùʾ£¬½ñ¿¼ÂÇf(x)£½x(x£1)¡¤(x£«1)£«0.01£¬Ôò·½³Ìʽf(x)£½0
¢ÙÓÐÈý¸öʵ¸ù£»
¢Úµ±x£¼£1ʱ£¬Ç¡ÓÐһʵ¸ù(ÓÐһʵ¸ùÇÒ½öÓÐһʵ¸ù)£»
¢Ûµ±£1£¼x£¼0ʱ£¬Ç¡ÓÐһʵ¸ù£» ¢Üµ±0£¼x£¼1ʱ£¬Ç¡ÓÐһʵ¸ù£» ¢Ýµ±x£¾1ʱ£¬Ç¡ÓÐһʵ¸ù£® ÕýÈ·µÄÓÐ________£® Èý¡¢½â´ðÌâ
9£®ÅжϷ½³Ìx£x£1£½0ÔÚÇø¼ä[1,1.5] ÄÚÓÐÎÞʵÊý½â£»Èç¹ûÓУ¬Çó³öÒ»¸ö½üËÆ½â(¾«È·µ½0.1)£®
10£®ÒÑÖª¶þ´Îº¯Êýf(x)Âú×ãf(x£«1)£f(x)£½2x£¬ÇÒf(0)£½1. (1)Çóf(x)µÄ½âÎöʽ£»
(2)Èôº¯Êýh(x)£½f(x)£ax£¬x¡Ê[2,3]ʱÓÐΨһÁãµã£¬ÇÒ²»ÊÇÖØ¸ù£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
(3)µ±x¡Ê[£1,1]ʱ£¬²»µÈʽf(x)£¾2x£«mºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
´ð°¸
1£®½âÎö£ºÑ¡D Ò×ÖªAÖ»ÓÐÒ»¸öÁãµã£»¶ÔÓÚB£¬·½³Ìx£«2x£«3£½0Î޽⣻¶ÔÓÚC£¬Áî2log2x£½0£¬Ò²Î޽⣻¶ÔÓÚD£¬y£½0ÓÐÁ½½âx£½2 012ºÍx£½0.
2£®½âÎö£ºÑ¡A Áîy1£½(x£a)(x£b)£«(x£b)(x£c)£½(x£b)¡¤[2x£(a£«c)]£¬y2£½£(x£c)(x£a)£¬ÓÉa
3£®½âÎö£ºÑ¡B ¡ßf(1)£½ln 2£2£¼0£¬f(2)£½ln 3£1£¾0£¬Ôòº¯Êýf(x)µÄÁãµãËùÔڵĴóÖÂÇø¼äÊÇ(1,2)£®
4£®½âÎö£ºÑ¡A ·ÖÈýÖÖÇé¿ö£¬ÔÚÍ¬Ò»×ø±êϵÖл³öy£½|ax|ºÍy£½x£«aµÄͼÏñÈçͼ£º
2
3
½áºÏͼÏñ¿ÉÖª·½³Ì|ax|£½x£«aÓÐÁ½¸ö½âʱ£¬ÓÐa£¾1. 5£®½âÎö£ºÁîf(x)£½x£2x£5£¬
¿ÉÖª£¬f(2)¡¢f(3)·Ö±ðµÈÓÚ£1¡¢16£¬ÓÖÒòΪf(2.5)£½Îª[2,2.5)£®
´ð°¸£º[2,2.5) 6£®
45
£¾0£¬ÏÔÈ»ÏÂÒ»¸öÓиùµÄÇø¼ä8
3
½âÎö£º·Ö±ð×÷³öº¯Êýf(x)£½3£xÓ뺯Êýg(x)£½2µÄͼÏñ£¬ÈçͼËùʾ£®¡ßf(0)£½3£¬g(0)£½1£¬¡à´ÓͼÏñÉÏ¿ÉÒÔ¿´³öËüÃÇÓÐ2¸ö½»µã£®
´ð°¸£º2
7£®½âÎö£ºµ±x¡Ü1ʱ£¬y£½3£2£¬Áîy£½0£¬µÃx£½log32¡Ü1£¬ µ±x£¾1ʱ£¬y£½£x£2£¬Áîy£½0£¬µÃx£½£2²»ºÏÌâÒ⣬ ×ÛÉÏ£¬ÁãµãÊÇlog32. ´ð°¸£ºlog32 8£®½âÎö£º
x2
£x
º¯Êýf(x)µÄͼÏñÈçͼËùʾ£¬ÓÉͼÏñÒ×Öª£¬µ±x£¼£1ʱ£¬·½³Ìf(x)£½0Ç¡ÓÐһʵ¸ù£»µ±£1£¼x£¼0ʱ£¬·½³Ìf(x)£½0ûÓÐʵ¸ù£»µ±0£¼x£¼1ʱ£¬Ç¡ÓÐÁ½¸öʵ¸ù£»µ±x£¾1ʱ£¬Ã»ÓÐʵ¸ù£®
´ð°¸£º¢Ù¢Ú
9£®½â£ºÉ躯Êýf(x)£½x£x£1£¬ÒòΪf(1)£½£1£¼0£¬
3
f(1.5)£½0.875£¾0£¬ÇÒº¯Êýf(x)£½x3£x£1µÄͼÏñÊÇÁ¬ÐøµÄÇúÏߣ¬ËùÒÔ·½³Ìx3£x£1
£½0ÔÚÇø¼ä[1,1.5]ÄÚÓÐʵÊý½â£®
È¡Çø¼ä(1,1.5)µÄÖеãx1£½1.25£¬ÓüÆËãÆ÷¿ÉËãµÃ
f(1.25)£¼0£¬ÒòΪf(1.25)¡¤f(1.5)£¼0£¬
ËùÒÔx0¡Ê(1.25,1.5)£®
ÔÙÈ¡(1.25,1.5)µÄÖеãx2£½1.375£¬ÓüÆËãÆ÷¿ÉËãµÃ
f(1.375)¡Ö0.22£¾0£¬
ÒòΪf(1.25)¡¤f(1.375)£¼0£¬ ËùÒÔx0¡Ê(1.25,1.375)£®
ͬÀí£¬¿ÉµÃx0¡Ê(1.312 5,1.375)£¬
x0¡Ê(1.312 5,1.343 75)£®
ÓÉÓÚÇø¼ä(1.312 5,1.343 75)ÄÚµÄËùÓÐÊý¾«È·µ½0.1¶¼ÊÇ1.3£¬ËùÒÔ1.3ÊÇ·½³Ìx£x£1£½0ÔÚÇø¼ä[1,1.5]ÄÚµÄÒ»¸ö½üËÆ½â£®
3