5.雅可比迭代进行五步可得?1?2.53652,?2??0.0166474,?3?1.48023,对应的特征向量分别为
x1?(0.531632,0.461334,0.710313)TT,
x2?(?0.721102,0.686454,0.0938701), x3?(?0.444293,?0.562111,0.697592),
T最优值p?1.26658。
6.(a)
Px?e1,P正交,则P第一列P1?xTT,B1?PAP1?PAx??Px??e1,又B?PAPPTT是
对称矩阵,B的第一行和第一列除?外均为零。(b)
?2/3?P?1/3??2/3?1/32/3?2/32/3???2/3??1/3??为反射阵,Px?e1?Pe1?x,解得
TB?PAP,
?9??0??0??501800??0??9??0。
7.由豪斯荷尔德方法得
?1?U?0??0?0?0.6?0.80???0.8?0.6???1?B?UAU??5??0?2.920.56??0.56??0.92??。
,
8.
aj1??ai1sin??aj1cos??0sin??aj1ai1?aj122(2),
ai1ai1?aj122,cos??解得
代入得
,
,(PijA)jk?ajkcos??aiksin??ajkai1?aikaj1a?a2i12j1(PijA)ik?aikcos??ajksin??aikai1?ajkaj1a?aTT2i12j1,9.(a)(b)
由
Ax?AP1P2?Pn?2y?P1?Pn?2Pn?2?P1AP1?Pn?2y?P1?Pn?2An?1y??P1?Pn?2y,
An?2?Pn?2An?1Pn?2T可求出初等反射阵Pn?2,依次类推,x?P1P2?Pn?3Pn?2y。 ,带位移QR方法计算可得
10.(a)令
sk?a33(k)?1?3.37215,?2?1.99872,?3??2.37079 ,
(b) 令
sk?a33(k),带位移QR方法计算可得
?5????5??25???5????0??????0???3??0?A?0???0?1?????1?3.73169,?2?2.00036,?3?0.267949。
??1??R?0????0?0?555??50???325????05???25???????35?23053255550010?330253???3??3??11.
A?,故有
?1/3?Q?R2/3??2/3??2?/3????1/3???2?/3???2?/3?3?2/3?0?1/?3??03033。