数学发展简史
数学发展史大致可以分为四个阶段。
一、 数学形成时期 ( ——公元前 5 世纪)
建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。
二、 常量数学时期 (前 5 世纪——公元 17 世纪)
也称初等数学时期,形成了初等数学的主要分支:算术、几
何、代数、三角。该时期的基本成果,构成中学数学的主要内容。
1.古希腊 (前 5 世纪——公元 17 世纪)
毕达哥拉斯 ——“万物皆数”
欧几里得 ——《几何原本》
阿基米德 —— 面积、体积
阿波罗尼奥斯—— 《圆锥曲线论》
托勒密 —— 三角学
丢番图 —— 不定方程
2.东方 (公元 2 世纪——15 世纪)
1) 中国
西汉(前 2 世纪) ——《周髀算经》、《九章算术》
魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之
出入相补原理,割圆术,算 π
宋元时期 (公元 10 世纪——14 世纪)——宋元四大家
杨辉、秦九韶、李冶、朱世杰
天元术、正负开方术——高次方程数值求解;
大衍总数术 —— 一次同余式组求解
2) 印度
现代记数法(公元 8 世纪)——印度数码、有 0;十进制
(后经阿拉伯传入欧洲,也称阿拉伯记数法)
数学与天文学交织在一起
阿耶波多——《阿耶波多历数书》(公元 499 年)
开创弧度制度量
婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》
代数成就可贵
婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)
算术、代数、组合学
3)阿拉伯国家(公元 8 世纪——15 世纪)
花粒子米——《代数学》曾长期作为欧洲的数学课本
“代数”一词,即起源于此;阿拉伯语原意是“还原”,即
“移项”;此后,代数学的内容,主要是解方程。
阿布尔.维法
奥马尔.海亚姆