一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:i?e(2) -1
解:?1?ei??cos??isin? (3) 1?i3 解:1?i3?2ei?/3?2?cos?/3?isin?/3? (4) 1?cos??isin? 解:
1?cos??isin??2sin2 ?2sini?2?cos?2?isin?2
?2?i2sin?2cos?2?2sin?2(sin??icos)22????i????22??????????cos(?)?isin(?)?2sine??2?2222?2
(5) z3
解:z3?r3ei3??r3?cos3??isin3?? (6) e1?i
解:e1?i?eei?e?cos1?isin1?
1?i 1?i1?i1?i解:???i?ei3?/4?cos3?/4?isin3?/4
1?i1?i
二、计算下列数值
(7)
(1) 解:
a?ib a?ib?a2?beb??i?arctg?2k??2?a??4a2?beb?1?i?arctg?k??2?2a?1biarctg?4222a?a?be ??1biarctg22??4a?be2a?
(2)
3i 解:3i?e3???i??2k???2??e??2k??i????63??i?6?e???2??i???6?3?????e??i????4????e?63??3i?223i???
22??i(3) ii i解:ii??ei??????????2?2k?????e?2?2k???
(4)
ii ?解:ii??i?e???2?2k?????1/i????2?2k??e??
(5) cos5?
解:由于:?ei??5??e?i??5?2cos5?,
?ei??5??cos??isin??55??Cn5?cos??n?isin??5?n而:
n?0
?e?i??5??cos??isin??55??Cn?cos??n??isin??5?n5n?0所以:
cos5??15n2?C????n?isin??5?n??cos??n??isin??5?n5?cos?n?0? ?152?Cn5?cos??n?isin??5?n?1???1?5?n?
n?0?? ?5cos??isin??4?C35?cos??3?isin??2??cos??5 ?5cos?sin4??10cos3?sin2??cos5?(6) sin5?
解:由于:?ei??5??e?i??5?2sin5?,
所以:
15sin5??2i?Cn5??cos??n?isin??5?n??cos??n??isin??5?n?n?0?? ?12i?5Cnn?isin??5?n?5?n5?cos??n?0?1???1??? ?1i??isin??5?C22345?cos???isin???C45isin??cos??? ?sin5??10cos2?sin3??5sin?cos4?(7) cos??cos2???cosn?
解:
欢迎下载 —
2
—
cos??cos2??1i??(e?ei2???ein?)?(e?i??e?i2???e?in?)???2i?in??i??i??in?i?1?ei?(1?ein?)e?i?(1?e?in?)?1?e(1?e)?1?e??e(1?e)?1?e??? ?????2?2?1?ei?1?e?i?2(1?cos?)?????1?ei??e?i??2?ei(n?1)??e?i(n?1)??ein??e?in?? ?? ?2?2(1?cos?)??cosn?? ?1?2cos??2?2cos(n?1)??2cosn??cos??1?cos(n?1)??cosn???2?2(1?cos?)2(1?cos?)??1?sin(n?)??sin22 ?2sin?(8) sin??sin2??解:
sin??sin2??2?sinn? ?sinn??1i?i2??(e?e??2i?ein?)?(e?i??e?i2???e?in?)??i?in??i??i??in?i?1?ei?(1?ein?)e?i?(1?e?in?)?1?e(1?e)?1?e??e(1?e)?1?e??? ??????i??i?2i?1?e1?e2(1?cos?)??2i???1?ei??1?ei(n?1)??ein??e?i??1?e?i(n?1)??e?in?? ?? ?2i?2(1?cos?)? ?1?2isin??2isin(n?1)??2isinn??sin??sin(n?1)??sinn????2i?2(1?cos?)2(1?cos?)?1??cos(n?)??cos22 ??2sin21.2 复变函数
1、试证明函数f(z)=Arg(z) (-? 证明:(1) 在负实轴上,任取一点z??a,则分别由水平方向和垂直方向趋近z点有: ?y?0??y?0?limf(z)?lim?Arg(?a?i?y)???y?0 limf(z)?lim?Arg(?a?i?y)????y?0 显然函数在负实轴上不连续。 (2) 在零点,沿z?re方向趋近于零点则: limf(z)?limArg(re)?? ?z?0?z?0i?i? 显然,其极限结果与路径相关,则该函数在0点无极限。 2、复平面上,圆周可以写成Azz??z??z?C?0,这里A,C为实数,?为复数。 证明:在平面上圆的一般方程表示为: 欢迎下载 3 x2?y2?ax?by?c?0 则在复平面上:x?12(z?z),y?12i(z?z),所以圆方程变形为: zz???a?2?ib?2??z???a?2?ib?2??z?c?0 若令: ?aA?2?ib2,CA?c 则:Azz??z??z?C?0 2.1 解析函数 1、试证明下列函数处处不可微: (1) f(z)?z (2) f(z)?x 证明: (1) 在z?0处,有: ?z ?f(z)?z?x?x??z?y?y1x?x?y?y?limz?0?z??limz?0?x?i?y??limz?0?x?i?y?r?limz?0?x?i?y 若沿?z??ei?方向趋近于z点,则: ?f(z)1?limz?0?z?r?limx?cos??y?sin?z?0?ei??1r?xcos??ysin??e?i? 显然,函数不可微。 (2) 在z?0处,有: lim?f(z)?z?z?0?z??limz?0?x?i?y 若沿?z??ei?方向趋近于0点,则: ?f(z)?lim?z?e?i??limz?0?z?z?0?x?i?y 显然,函数不可微。 2、设: ???u(x,y)?x3?y3x3?y3x2?y2,v(x,y)?x2?y2,z?0 ??u(x,y)?v(x,y)?0,z?0 试证明f(z)=u(x,y)+iv(x,y)在原点满足C-R条件,但不可微。 证明: 首先: 欢迎下载 — 4 — ?u(x,y)?u(x,y)?1,??1?x(0,0)?y(0,0)?v(x,y)?v(x,y)?1,?1?x(0,0)?y(0,0) 显然: ?u(x,y)?v(x,y)?u(x,y)?v(x,y)?, ???x(0,0)?y(0,0)?y(0,0)?x,在原点f(z)满足C-R条件。 (0,0)而在(0,0)点,f(z)的导数定义为: ?x3??y3?x3??y3?i222?f(z)f(?z)?f(0)f(?z)?x??y?x??y2' f(z)?lim ?lim?lim?lim?z?0?z?z?0?z?0?z?0?x?i?y?x?i?y?x?i?y 若沿?z??ei?方向趋近于0点,则: 3333cos??sin??icos??sin??????1(1?i)(3?e?i4?) ?f(z)f'(z)?lim??z?0?zcos??isin?4 显然,函数在原点的导数不存在,所以函数虽然在原点满足C-R条件,但不可微。C-R条件只是函数 可微的必要条件。 1.2 复变函数 1、试证明函数f(z)=Arg(z) (-? 证明:(1) 在负实轴上,任取一点z??a,则分别由水平方向和垂直方向趋近z点有: ?y?0??y?0limf(z)?lim?Arg(?a?i?y)???y?0 lim?f(z)?lim?Arg(?a?i?y)????y?0 显然函数在负实轴上不连续。 (2) 在零点,沿z?re方向趋近于零点则: limf(z)?limArg(re)?? ?z?0?z?0i?i? 显然,其极限结果与路径相关,则该函数在0点无极限。 2、复平面上,圆周可以写成Azz??z??z?C?0,这里A,C为实数,?为复数。 证明:在平面上圆的一般方程表示为: x?y?ax?by?c?0 则在复平面上:x? zz?? 若令: 欢迎下载 2211(z?z),y?(z?z),所以圆方程变形为: 22i?ab??ab??i?z???i?z?c?0 ?22??22??A?abC?i,?c 22A5