【通用版】2018年中考数学总复习:知识点全梳理(含答案)

第一部分 教材知识梳理·系统复习

第一单元 数与式

第1讲 实 数

知识点一:实数的概念及分类 关键点拨及对应举例 1.实数 (1)按定义分 (2)按正、负性分 (1)0既不属于正数,也不属于负数. (2)无理数的几种常见形式判断:①含π的式 正有理数 子;②构造型:如3.010010001…(每两个1有理数 0 有限小数或 正实数 之间多个0)就是一个无限不循环小数;③ 负有理数 无限循环小数 实数 0 开方开不尽的数:如,;④三角函数型:如实数 sin60°,tan25°. 正无理数 负实数 (3)失分点警示:开得尽方的含根号的数属于无理数 无限不循环小数 有理数,如=2,=-3,它们都属于有理数. 负无理数 (1)三要素:原点、正方向、单位长度 (2)特征:实数与数轴上的点一一对应;数轴右边的点表示的数总比左边的点表示的数大 (1)概念:只有符号不同的两个数 (2)代数意义:a、b互为相反数? a+b=0 (3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等 (1)几何意义:数轴上表示的点到原点的距离 (2)运算性质:|a|= a (a≥0); |a-b|= a-b(a≥b) -a(a<0). b-a(a<b) (3)非负性:|a|≥0,若|a|+b2=0,则a=b=0. 例: 数轴上-2.5表示的点到原点的距离是2.5. a的相反数为-a,特别的0的绝对值是0. 例:3的相反数是-3,-1的相反数是1. (1)若|x|=a(a≥0),则x=±a. (2)对绝对值等于它本身的数是非负数. 例:5的绝对值是5;|-2|=2;绝对值等于3的是±3;|1-|=-1. 知识点二 :实数的相关概念 2.数轴 3.相反数 4.绝对值 5.倒数 (1)概念:乘积为1的两个数互为倒数.a的倒数为1/a(a≠0) 例: (2)代数意义:ab=1?a,b互为倒数 -2的倒数是-1/2 ;倒数等于它本身的数 有±1. (1)形式:a×10n,其中1≤|a|<10,n为整数 例: (2)确定n的方法:对于数位较多的大数,n等于原数的整数21000用科学记数法表示为2.1×104; -为减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中19万用科学记数法表示为1.9×105;左起至第一个非零数字前所有零的个数(含小数点前面的一个) 0.0007用科学记数法表示为7×10-4. (1)定义:一个与实际数值很接近的数. (2)精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位. 例: 3.14159精确到百分位是3.14;精确到0.001是3.142. 知识点三 :科学记数法、近似数 6.科学记数法 7.近似数 知识点四 :实数的大小比较 8.实数的大小比较 (1)数轴比较法:数轴上的两个数,右边的数总比左边的数大. 例: (2)性质比较法:正数>0>负数;两个负数比较大小,绝对值把1,-2,0,-2.3按从大到小的顺序排大的反而 小. 列结果为___1>0>-2>-2.3_. (3)作差比较法:a-b>0?a>b;a-b=0?a=b;a-b<0?a<b. (4)平方法:a>b≥0?a2>b2. 几个相同因数的积; 负数的偶(奇)次方为正(负) a=_1_(a≠0) -pp0知识点五 :实数的运算 9. 常见运算 乘 方 零次幂 例: (1)计算:1-2-6=_-7__;(-2)2=___4__; 3-1=_1/3_;π0=__1__; (2)64的平方根是_±8__,算术平方根是__8_,立方根是__4__. 失分点警示:类似 “的算术平方根”计算错误. 例:相互对比填一填:16的算术平方根是 4___,的算术平方根是___2__. 负指数幂 a=1/a(a≠0,p为整数) 平方根、 2若x=a(a≥0),则x=?a.其中a是算术平方根. 算术平方根 立方根 若x=a,则x=3a. 310.混合运算 先乘方、开方,再乘除,最后加减;同级运算,从左 向右进行;如有括号,先做括号内的运算,按小括号、 中括号、大括号一次进行.计算时,可以结合运算律, 使问题简单化 第2讲 整式与因式分解

一、 知识清单梳理

知识点一:代数式及相关概念 (1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字关键点拨及对应举例 求代数式的值常运用整体代入法计算. 例:a-b=3,则3b-3a=-9. 1.代数式 2.整式 母连接而成的式子,单独的一个数或一个字母也是代数式. (2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值. (1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数. 例: (1)下列式子:①-2a;②3a-5b;③x/2;④2/x;⑤7a;⑥7x+8xy;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤. (2)多项式7mn-11mn+1是六次三项式,常数项是 __1 . 522232几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的(单(2)多项式:项的次数叫做多项式的次数. 项式、多项(3)整式:单项式和多项式统称为整式. 式) (4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项. 知识点二:整式的运算 3.整式的加减运算 (1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,不要有漏项. 则括号里的各项都变号. 例:-2(3a-2b-1)=-6a+4b+2. (3)整式的加减运算法则:先去括号,再合并同类项. (1)同底数幂的乘法:am·an=amn; + 其中m,n都在整数 (1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2×2=6. (2)在解决幂的运算时,有时需要先化成同底数.例:2·4=2. mm3mmn4.幂运算法则 (2)幂的乘方:(am)n=amn; (3)积的乘方:(ab)n=an·bn; (4)同底数幂的除法:am÷an=amn (a≠0). -(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄. (2)单项式×多项式: m(a+b)=ma+mb. (3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb. (4)单项式÷单项式:将系数、同底数幂分别相除. (5)多项式÷单项式:①多项式的每一项除以单项式;②商相加. (6)乘法 公式 平方差公式:(a+b)(a-b)=a-b. 完全平方公式:(a±b)=a±2ab+b. 变形公式: a+b=(a±b)?2ab,ab=【(a+b)-(a+b)】 /2 22222222222 失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错. 例:(2a-1)(b+2)=2ab+4a-b-2. 5.整式的乘除运算 注意乘法公式的逆向运用及其变形公式的运用 例:(a-1)2-(a+3)(a-3)-10=_-2a__. 6.混合运算 注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算. 知识点五:因式分解 (1)定义:把一个多项式化成几个整式的积的形式. 7.因式分解 (2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c). ②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2. (3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解. (1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式; (2) 因式分解与整式的乘法互为逆运算.

第3讲 分 式

二、 知识清单梳理

知识点一:分式的相关概念 关键点拨及对应举例 在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母. 例:下列分式:①;②; ③;④2x?2,其中是分A(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)B1. 分式的概念 的式子. (2)最简分式:分子和分母没有公因式的分式. (1)无意义的条件:当B=0时,分式x2?1式是②③④;最简分式 ③. A无意义; BA(2)有意义的条件:当B≠0时,分式有意义; 2.分式的B意义 (3)值为零的条件:当A=0,B≠0时,分式失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0. A=0. Bx2?1例: 当的值为0时,则x=-1. x?1( 1 ) 基本性质:3.基本性质 AA?CA?C??(C≠0). BB?CB?C由分式的基本性质可将分式进行化简: (2)由基本性质可推理出变号法则为: A?AAA?A???A????; ??. B?BBBB?Bx2?1x?1例:化简:2=. x?2x?1x?1

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4