数学f1初中数学2009年中考精品:数学压轴题汇编(含解题过程)第三部分

知识决定命运 百度提升自我

∵AD∥BC

∴∠AMB?∠MBC?60?, ∠DMC?∠MCB?60? ∴△AMB≌△DMC ···························· 2分 ∴AB?DC

∴梯形ABCD是等腰梯形. ······································································· 3分

∠MBC?∠MCB?60?,(2)解:在等边△MBC中,MB?MC?BC?4,

∠MPQ?60?

∴∠BMP?∠BPM?∠BPM?∠QPC?120?

∴∠BMP?∠QPC ······························································································· 4分 ∴△BMP∽△CQP ∴

PCCQ? ··································································· 5分 BMBP∵PC?x,MQ?y ∴BP?4?x,QC?4?y ·············································· 6分 ∴

x4?y12? ∴y?x?x?4 ········································································· 7分 44?x4∥AM,BP ∥MD (3)解:①当BP?1时,则有BP 则四边形ABPM和四边形MBPD均为平行四边形 ∴MQ?y?1213?3?3?4? ································································ 8分 44∥AM,PC ∥MD 当BP?3时,则有PC 则四边形MPCD和四边形APCM均为平行四边形

113?1?1?4? ··································································· 9分 441313,MQ?或BP?3,MQ?时,以P、M和A、B、C、 D∴当BP?144∴MQ?y?中的两个点为顶点的四边形是平行四边形.

此时平行四边形有4个. ·········································································· 10分 ②△PQC为直角三角形 ··········································································· 11分 ∵y?12?x?2??3 4∴当y取最小值时,x?PC?2····························································· 12分 ∴P是BC的中点,MP?BC,而∠MPQ?60?,

∴∠CPQ?30?,∴∠PQC?90? ·························································· 13分

知识决定命运 百度提升自我

(2009年湖南省株洲市)23.(本题满分12分)如图,已知?ABC为直角三角形,

?ACB?90?,AC?BC,点A、C在x轴上,点B坐标为(3,m)(m?0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D. (1)求点A的坐标(用m表示); (2)求抛物线的解析式;

(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结

BQ并延长交AC于点F,试证明:FC(AC?EC)为定值.

QDE yB OPFCA

(,)m可知OC?3,BC?m,23.(1)由B3又△ABC为等腰直角三角形,∴AC?BC?m,

xOA?m?3,所以点A的坐标是(3?m,0). ………………… 3分

(2)∵?ODA??OAD?45? ∴OD?OA?m?3,则点D的坐标是(0,m?3). 又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:y?a(x?1),得:

2??a?1?a(3?1)?m2 解得 ∴抛物线的解析式为y?x?2x?1 ………7分 ??2m?4???a(0?1)?m?32(3)过点Q作QM?AC于点M,过点Q作QN?BC于点N,设点Q的坐标是

(x,x2?2x?1),则QM?CN?(x?1)2,MC?QN?3?x.

知识决定命运 百度提升自我

QMPM(x?1)2x?1??∵QM//CE ∴?PQM∽?PEC ∴ 即,得EC?2(x?1) ECPCEC2QNBN43?x4?(x?1)2??∵QN//FC ∴?BQN∽?BFC ∴ 即,得FC? FCBCx?1FC4又∵AC?4 ∴FC(AC?EC)?444[4?2(x?1)]?(2x?2)??2(x?1)?8 x?1x?1x?1即FC(AC?EC)为定值8. ……………………12分

本答案仅供参考,若有其他解法,请参照本评分标准评分.

(2009年衡阳市)26、(本小题满分9分)

如图12,直线y??x?4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D. (1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由; (2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?

(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移

的距离为a(0?a?4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象. y B D M B y B y O C A x O A 图12(2)

x O A 图12(3)

x

解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(00,-x+4>0); 则:MC=∣-x+4∣=-x+4,MD=∣x∣=x; ∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8

∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8; (2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4

∴四边形OCMD的面积是关于点M的横坐标x(0

121a??a2?4; 22

知识决定命运 百度提升自我

如图10(3),当2?a?4时,S?11(4?a)2?(a?4)2; 22∴S与a的函数的图象如下图所示:

S 4· 2· S?1S??a2?(40?a?2)

20 · 2 12(a?4)(2?a?4) 2· a4

25.(本小题12分)如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH (HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3 (1)延长HF交AB于G,求△AHG的面积.

(2)操作:固定△ABC,将直角梯形DEFH以每秒1个

单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯 形为DEFH′(如图12). 探究1:在运动中,四边形CDH′H能否为正方形?若能,

请求出此时t的值;若不能,请说明理由.

探究2:在运动过程中,△ABC与直角梯形DEFH′重叠

部分的面积为y,求y与t的函数关系.

(湖南2009年娄底市)25.(12分)

解:(1)∵AH∶AC=2∶3,AC=6

∴AH=2AC=2×6=4

33又∵HF∥DE,∴HG∥CB,∴△AHG∽△ACB…………………………1分 ∴AH=HG,即4=HG,∴HG=16…………………………………2分

ACBC683∴S△AHG=1AH·HG=1×4×16=32……………………………………3分

2233(2)①能为正方形…………………………………………………………………4分

∵HH′∥CD,HC∥H′D,∴四边形CDH′H为平行四边形

又∠C=90°,∴四边形CDH′H为矩形…………………………………5分 又CH=AC-AH=6-4=2

∴当CD=CH=2时,四边形CDH′H为正方形

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4