2017年秋高三(上)期末测试卷
理科数学
第I卷
一.选择题:本大题共12小题每小题5分,共60分。
1. 已知等差数列
中,
,则
的公差为
A. B. 2 C. 10 D. 13 【答案】B
【解析】由题意可得:本题选择B选项. 2. 已知集合
,则
.
A. {1,2} B. {5,6} C. {1,2,5,6} D. {3,4,5,6} 【答案】C
【解析】由题意可得:结合交集的定义有:本题选择C选项. 3. 命题“若
,则
”,则命题以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为
. ,
A. 1 B. 2 C. 3 D. 4 【答案】B 【解析】命题“若其逆命题:“若
,则,则
”是真命题,则其逆否命题为真命题; ”是假命题,则其否命题也是假命题;
综上可得:四个命题中真命题的个数为2. 本题选择B选项. 4. 已知两非零复数A.
B.
,若 C.
,则一定成立的是
D.
【答案】D
【解析】利用排除法:
1
当时,,而,选项A错误,
,选项B错误,
当
本题选择D选项. 5. 根据如下样本数据:
得到回归方程A.
,则
3 6 5 7 3 9 2 时,
,而
,选项C错误,
B. 变量与线性正相关 C. 当=11时,可以确定=3 D. 变量与之间是函数产关系 【答案】D
【解析】由题意可得:回归方程过样本中心点,则:求解关于实数的方程可得:由
,
,
,
,
可知变量与线性负相关;
当=11时,无法确定y的值;
变量与之间是相关关系,不是函数关系. 本题选择A选项.
点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.
6. 执行如下图所示的程序框图,若输入的值为9,则输出的结果是
2
A. B. 0 C. D. 1
【答案】C
【解析】由题意可得,该流程图的功能计算的值为:
.
本题选择C选项. 7. 函数
的图象大致为
A. B.
C. D.
【答案】A
【解析】由函数的解析式可得:
,
则函数图象关于坐标原点对称,选项C,D错误;
函数的定义域为,则,选项B错误;本题选择A选项.
3