ÐźÅÓëϵͳ

The Laplace transform of the rectangular pulse21020100-10-20024The Fourier transform of the rectangular pulse21.510.50-20-15-10-50frequence w5101520Q5-2 ÒÑÖªÒ»¸öÒò¹ûϵͳµÄϵͳº¯ÊýΪH(s)?ºÅΪx(t)?e?4ts?5£¬×÷ÓÃÓÚϵͳµÄÊäÈëÐÅ

s3?6s2?11s?6

u(t)£¬ÊÔÓÃMATLAB°ïÖúÄãÇóϵͳµÄÏìÓ¦ÐźÅy(t)µÄÊýѧ±í´ïʽ¡£

ÇëÔÚÕâÀﳭдÄãÓÃMATLABÇó½âµÄÃüÁ½áºÏ±ØÒªµÄÎÄ×Ö˵Ã÷£©£º

X(s)=

1 s?4s?5

s^4?10s^3?35s^2?50s?24Y(s)=H(s)X(s)=

>> b=[1 5] b =

1 5

>> a=[1 10 35 50 24] a =

1 10 35 50 24 >> [r p k]=residue(b,a) r =

-0.1667 1.0000 -1.5000 0.6667 p =

-4.0000 -3.0000 -2.0000 -1.0000 k = [] >>

¸ù¾ÝÉÏÃæµÄr¡¢p¡¢kÖ®Öµ£¬¿Éд³öY(s)µÄ²¿·Ö·ÖʽºÍµÄ±í´ïʽΪ£º Y(s)=-ËùÒÔ y(t)=-

1321+-+

6(s?4)s?32(s?2)3(s?1)1?4t3?2t2?t?3teu(t)+eu(t)-eu(t)+eu(t) 623

ËÄ¡¢ÊµÑé½áÂÛÓëÌå»á ͨ¹ýÕâ´ÎÊÔÑ飬¶ÔÊé±¾ÉϵÄÀ­ÆÕÀ­Ë¹±ä»»Ó븵ÀïÒ¶±ä»»µÄ¹ØÏµÓÐÁ˸üÉî¿ÌµÄÀí½â,ͬʱҲѧ»áÁËÓÃmatlabÇóÀ­Ë¹Äæ±ä»»µÄ·½·¨£¬ÊµÑé¹ý³ÌÖÐÒ²¹®¹ÌÁËÊéÉϵÄ֪ʶ¡£

ʵÑéÁù Z±ä»»

Ò»¡¢ÊµÑéÄ¿µÄ

ͨ¹ýMATLAB·ÂÕæÀëɢʱ¼äϵͳ£¬Ñо¿ÆäʱƵÓòÌØÐÔ£¬¼ÓÉî¶ÔÀëɢϵͳµÄ³å¼¤ÏìÓ¦£¬ÆµÂÊÏìÓ¦·ÖÎöºÍÁ㼫µã·Ö²¼¸ÅÄîºÍÀí½â¡£

¶þ¡¢ÊµÑéÒªÇó

ÕÆÎÕZ±ä»»¼°Æä»ù±¾ÐÔÖÊ£¬ÕÆÎÕÓ¦ÓÃZÇó½âϵͳµÄ΢·Ö·½³Ì£¬Äܹ»×Ô¼º±àд³ÌÐòÍê³É¶ÔϵͳʱÓòÏìÓ¦µÄÇó½â¡£

ËÄ¡¢ÊµÑéÄÚÈÝ

1.ÒÑÖªÓÃÏÂÁвî·Ö·½³ÌÃèÊöµÄÒ»¸öÏßÐÔʱ²»±äÒò¹ûϵͳ y(n) = y(n - 1) + y(n -2) + x(n-1)

y(n)-0.4y(n-1)-0.5y(n-2)=0.2x(n)+0.1x(n-1)

·Ö±ðÇó³öÁ½¸öϵͳµÄϵͳº¯Êý¡¢Á㼫µã£¬²¢»­³öÁ㼫µãͼ£¬Ö¸³öÊÕÁ²Óò£»

ÇóϵͳµÄµ¥Î»³å¼¤ÏìÓ¦ºÍƵÂÊÏìÓ¦¡£ ¢å

ϵͳº¯ÊýÊÇ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

¼«µãpi=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ Áãµã¤çj=0

µ¥Î»³å¼¤

ƵÂÊÏìÓ¦

¢æ

ϵͳº¯ÊýÊÇ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£

¼«µãpi=0.2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ Áãµã¤çj=-0.5,0

µ¥Î»³å¼¤

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4