The Laplace transform of the rectangular pulse21020100-10-20024The Fourier transform of the rectangular pulse21.510.50-20-15-10-50frequence w5101520Q5-2 ÒÑÖªÒ»¸öÒò¹ûϵͳµÄϵͳº¯ÊýΪH(s)?ºÅΪx(t)?e?4ts?5£¬×÷ÓÃÓÚϵͳµÄÊäÈëÐÅ
s3?6s2?11s?6
u(t)£¬ÊÔÓÃMATLAB°ïÖúÄãÇóϵͳµÄÏìÓ¦ÐźÅy(t)µÄÊýѧ±í´ïʽ¡£
ÇëÔÚÕâÀï³Ð´ÄãÓÃMATLABÇó½âµÄÃüÁ½áºÏ±ØÒªµÄÎÄ×Ö˵Ã÷£©£º
X(s)=
1 s?4s?5
s^4?10s^3?35s^2?50s?24Y(s)=H(s)X(s)=
>> b=[1 5] b =
1 5
>> a=[1 10 35 50 24] a =
1 10 35 50 24 >> [r p k]=residue(b,a) r =
-0.1667 1.0000 -1.5000 0.6667 p =
-4.0000 -3.0000 -2.0000 -1.0000 k = [] >>
¸ù¾ÝÉÏÃæµÄr¡¢p¡¢kÖ®Öµ£¬¿Éд³öY(s)µÄ²¿·Ö·ÖʽºÍµÄ±í´ïʽΪ£º Y(s)=-ËùÒÔ y(t)=-
1321+-+
6(s?4)s?32(s?2)3(s?1)1?4t3?2t2?t?3teu(t)+eu(t)-eu(t)+eu(t) 623
ËÄ¡¢ÊµÑé½áÂÛÓëÌå»á ͨ¹ýÕâ´ÎÊÔÑ飬¶ÔÊé±¾ÉϵÄÀÆÕÀ˹±ä»»Ó븵ÀïÒ¶±ä»»µÄ¹ØÏµÓÐÁ˸üÉî¿ÌµÄÀí½â,ͬʱҲѧ»áÁËÓÃmatlabÇóÀË¹Äæ±ä»»µÄ·½·¨£¬ÊµÑé¹ý³ÌÖÐÒ²¹®¹ÌÁËÊéÉϵÄ֪ʶ¡£
ʵÑéÁù Z±ä»»
Ò»¡¢ÊµÑéÄ¿µÄ
ͨ¹ýMATLAB·ÂÕæÀëɢʱ¼äϵͳ£¬Ñо¿ÆäʱƵÓòÌØÐÔ£¬¼ÓÉî¶ÔÀëɢϵͳµÄ³å¼¤ÏìÓ¦£¬ÆµÂÊÏìÓ¦·ÖÎöºÍÁ㼫µã·Ö²¼¸ÅÄîºÍÀí½â¡£
¶þ¡¢ÊµÑéÒªÇó
ÕÆÎÕZ±ä»»¼°Æä»ù±¾ÐÔÖÊ£¬ÕÆÎÕÓ¦ÓÃZÇó½âϵͳµÄ΢·Ö·½³Ì£¬Äܹ»×Ô¼º±àд³ÌÐòÍê³É¶ÔϵͳʱÓòÏìÓ¦µÄÇó½â¡£
ËÄ¡¢ÊµÑéÄÚÈÝ
1.ÒÑÖªÓÃÏÂÁвî·Ö·½³ÌÃèÊöµÄÒ»¸öÏßÐÔʱ²»±äÒò¹ûϵͳ y(n) = y(n - 1) + y(n -2) + x(n-1)
y(n)-0.4y(n-1)-0.5y(n-2)=0.2x(n)+0.1x(n-1)
·Ö±ðÇó³öÁ½¸öϵͳµÄϵͳº¯Êý¡¢Á㼫µã£¬²¢»³öÁ㼫µãͼ£¬Ö¸³öÊÕÁ²Óò£»
ÇóϵͳµÄµ¥Î»³å¼¤ÏìÓ¦ºÍƵÂÊÏìÓ¦¡£ ¢å
ϵͳº¯ÊýÊÇ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
¼«µãpi=´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ Áãµã¤çj=0
µ¥Î»³å¼¤
ƵÂÊÏìÓ¦
¢æ
ϵͳº¯ÊýÊÇ´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£
¼«µãpi=0.2´íÎó£¡Î´ÕÒµ½ÒýÓÃÔ´¡£ Áãµã¤çj=-0.5,0
µ¥Î»³å¼¤