ʵÑéÎå ÐźŵÄÀÊϱ任¼°ÏµÍ³¸´ÆµÓòµÄ·ÖÎö
Ò»¡¢ÊµÑéÄ¿µÄ
1¡¢ ѧ»áÓÃMATLAB½øÐв¿·Ö·Öʽչ¿ª£» 2¡¢ ѧ»áÓÃMATLAB·ÖÎöLTIϵͳµÄÌØÐÔ£» 3¡¢ ѧ»áÓÃMATLAB½øÐÐLaplaceÕý¡¢·´±ä»»¡£ ¶þ¡¢ÊµÑéÔÀí¼°ÄÚÈÝ
1£®ÓÃMATLAB½øÐв¿·Ö·Öʽչ¿ª
ÓÃMATLABº¯Êýresidue¿ÉÒԵõ½¸´ÔÓÓÐÀí·ÖʽF(s)µÄ²¿·Ö·Öʽչ¿ªÊ½£¬Æäµ÷ÓøñʽΪ ?r,p,k??residue(num,den)
ÆäÖУ¬num,den·Ö±ðΪF(s)µÄ·Ö×ӺͷÖĸ¶àÏîʽµÄϵÊýÏòÁ¿£¬rΪ²¿·Ö·ÖʽµÄϵÊý£¬pΪ¼«µã£¬kΪF(s)ÖÐÕûʽ²¿·ÖµÄϵÊý£¬ÈôF(s)ΪÓÐÀíÕæ·Öʽ£¬ÔòkΪÁã¡£
Àý5-1 Óò¿·Ö·Öʽչ¿ª·¨ÇóF(s)µÄ·´±ä»» F(s)?s?2 32s?4s?3s½â:ÆäMATLAB³ÌÐòΪ format rat; num=[1,2]; den=[1,4,3,0];
[r,p]=residue(num,den)
³ÌÐòÖÐformat ratÊǽ«½á¹ûÊý¾ÝÒÔ·ÖÊýÐÎʽÏÔʾ r =
-1/6 -1/2 2/3 p =
-3 -1 0
1?0.5?63F(s)¿ÉÕ¹¿ªÎª F(s)? ??ss?1s?3ËùÒÔ£¬F(s)µÄ·´±ä»»Îª f(t)???2?2?31?t1?3t?e?e?u(t) 26?
2£®ÓÃMATLAB·ÖÎöLTIϵͳµÄÌØÐÔ
ϵͳº¯ÊýH£¨s£©Í¨³£ÊÇÒ»¸öÓÐÀí·Öʽ£¬Æä·Ö×ӺͷÖĸ¾ùΪ¶àÏîʽ¡£¼ÆËãH£¨s£©µÄÁ㼫µã¿ÉÒÔÓ¦ÓÃMATLABÖеÄrootsº¯Êý£¬Çó³ö·Ö×ӺͷÖĸ¶àÏîʽµÄ¸ù£¬È»ºóÓÃplotÃüÁî»Í¼¡£
µ÷Óøñʽ£ºroots(C)
¹¦ÄÜ£ºÇó½âÒÔÏòÁ¿CΪϵÊýÏòÁ¿µÄ¶àÏîʽµÄ¸ù¡£
ÔÚMATLABÖл¹ÓÐÒ»ÖÖ¸ü¼ò±ãµÄ·½·¨»ÏµÍ³º¯ÊýH£¨s£©µÄÁ㼫µã·Ö²¼Í¼£¬¼´ÓÃpzmapº¯Êý»Í¼¡£Æäµ÷ÓøñʽΪ
pzmap(sys)
sys±íʾLTIϵͳµÄÄ£ÐÍ£¬Òª½èÖútfº¯Êý»ñµÃ£¬Æäµ÷ÓøñʽΪ
sys=tf(b,a)
ʽÖУ¬bºÍa·Ö±ðΪϵͳº¯ÊýH£¨s£©µÄ·Ö×ӺͷÖĸ¶àÏîʽµÄϵÊýÏòÁ¿¡£
Èç¹ûÒÑ֪ϵͳº¯ÊýH£¨s£©£¬ÇóϵͳµÄµ¥Î»³å¼¤ÏìÓ¦h(t)ºÍƵÂÊÏìÓ¦H¿ÉÒÔÓÃÒÔǰ£¨j?£©½éÉܹýµÄimpulseºÍfreqsº¯Êý¡£ µ÷Óøñʽ£ºh=impulse(num,den)
¹¦ÄÜ£ºÇó½â·Ö×Ó¶àÏîʽϵÊýΪnum¡¢·Öĸ¶àÏîʽϵÊýΪdenµÄϵͳµÄµ¥Î»³å¼¤ÏìÓ¦¡£
µ÷Óøñʽ£º[H,w]=freqs(num,den)
¹¦ÄÜ£ºÇó½â·Ö×Ó¶àÏîʽϵÊýΪnum¡¢·Öĸ¶àÏîʽϵÊýΪdenµÄϵͳµÄµ¥Î»³å¼¤ÏìÓ¦H£¬×Ô±äÁ¿Îªw¡£
Àý5-2 ÒÑ֪ϵͳº¯ÊýΪ H(s)=1
s3?2s2?2s?1ÊÔ»³öÆäÁ㼫µã·Ö²¼Í¼£¬ÇóϵͳµÄµ¥Î»³å¼¤ÏìÓ¦h(t)ºÍƵÂÊÏìÓ¦H£¬²¢ÅжÏϵͳ£¨j?£©ÊÇ·ñÎȶ¨¡£
½â£ºÆäMATLAB³ÌÐòÈçÏ£º num=[1];
den=[1,2,2,1]; sys=tf(num,den);
figure(1);pzmap(sys); t=0:0.02:10;
h=impulse(num,den,t); figure(2);plot(t,h)
title('Impulse Response') [H,w]=freqs(num,den); figure(3);plot(w,abs(H)) xlabel('\\omega')
title('Magnitude Response')
10.80.60.4Pole-Zero Mapaginary AxisIm0.20-0.2-0.4-0.6-0.8-1-1-0.9-0.8-0.7-0.6-0.5Real Axis-0.4-0.3-0.2-0.10
10.90.80.70.60.50.40.30.20.1002Magnitude Response4?6810