西工大附中2017-2018学年八年级上学期期末数学试卷

西工大附中2017-2018学年度第一学期期末考试

八年级数学试卷

(本试题满分100分,考试时间100分钟,不允许使用计算器) 一.选择题(共10小题,每小题3分,共计30分) 1.下列实数中的无理数是( ) A.4 B.8 C.

22 D.327 72.不等式6-3x>0的解集在数轴上表示为( )

A. B. C. D.

3.若一个正比例函数的图象经过A(3,-6)、B(m,4)两点、则m的值为( ) A.-8 B.8 C.-2 D.2

4.一次函数y=k1x+b1的图象与y=k2x+b2的图象相交于点P(﹣2,3),则方程组?的解是( ) A.??y?k1x?b1?y?k2x?b2?x??2 B.

y?3??x?2 C. ?y?3??x?3 D. ?y??2??x??2 ?y??3?5.若△ABC的三边a、b、c满足(a?b)2?|a2?b2?c2|?0,则△ABC 是( ) A.等腰三角形 B.直角三角形

C.等腰直角三角形 D.等腰三角形或直角三角形

6.如图,在5×5的正方形网格中,从在格点上的点A.、B、C、D中任取三点,所构成的三角形恰好是直角三角形的个数为( ) A1. B.2 C.3 D.4

7.若点M(﹣7,m),N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是( )

A.m>n B.m

8.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ) A.(﹣2,1)

B.(﹣1,1)

C.(1,﹣2)

D.(﹣1,﹣2)

9.如图,在平面直角坐标系xOy中,O为坐标系原点,A(3,0),B(3,1),C(0,1),将△OAB沿直线OB折叠,使得点A落在点D处,OD与BC交于点E,则OD所在直线的解析式为( ) A.y?5443x B.y?x C.y?x D.y?x 4534

10.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形,则符合条件的点P有( ) A.2个 B.3个 C.4个 D.5个 (提示:直角三角形斜边上的中线等于斜边的一半) 二、填空题(共6小题每小题3分,共计18分)

11.已知方程2x2n-1-3y3m-n+1=0是二元一次方程,则n?_____,m?______. 12.已知点P(3,a)关于y轴的对称点为Q(b,2),则a+b=_________

13.对于命题\如果∠1+∠2=90°,那么∠1=∠2″,能说明它是假命题的反例是_______________________________________

14.若y=3?x+x?3+4,则x2+y2的平方根是________.

15.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于84°,则∠OBC=______°. 16.如图,一次函数y=

317x+的图象向下平移2个单位后 得直线l,直线l交x22轴于点A、交y轴于点B,在线段AB上有一动点P(不与点A,B重合),过点P分

别作PE⊥x轴于点E,PF⊥y轴于点F,当线段EF的长最小时,点P的坐标为_________.

三、解答题:(共7道题共计52分) 17.(每题4分,共计8分) (1)计算:

45?205?3x?2y?71?1? ?(?)?|5?27| (2)解方程组:?x?2y?1??12?2?3

18.(4分)如图,已知△ABC(AC

19.(6分)某中学为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)

根据以上信息,解答下列问题:(1)该班共有________名学生. (2)补全条形统计图

(3)该班学生所穿校服型号的众数为_______,中位数为_______.

(4)如果该校预计招收新生1500名,根据样本数据,估计新生穿170型校服的学生大约有多少名?

20.(7分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF. (1)求证:CF=EB;

(2)请你判断AE、AF与BE之间的数量关系,并说明理由.

21.(8分)某厂工人小王某月工作的部分信息如下

信息一:工作时间:每天上午8:00~12:00,下午14:00~18: 每月25天:

信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于45件生产产品件数与所用时间之间的关系见下表:

生产甲产品件数(件)| 生产乙产品件数(件) 所用总时间(分) 10 15 10 20 500 900 信息三:按件计酬,每生产一件甲产品可得6元,每生产一件乙产品可得10元, 根据以上信息,回答下列问题

(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

22.(9分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题: (1)甲登山上升的速度是每分钟_____米 乙在A地时距地面的高度b为_____米.

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式

(3)登山多长时间时,甲、乙两人距地面的高度差为70米?

23.(本题满分10分)

(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE, 若AE=CD,求证:BD=CE;

(2)如图2,在(1)问的条件下,点H在BA边的延长线上,连接CH交BD延长线于点F,若BF=BC

①求证:EH=EC

②请你找出线段AH、AD、DF之间的数量关系,并说明理由

图1 图2 第23题图

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4