ANSI B92.1-1970(R1993) SAEÃÀ¹ú½¥¿ªÏß»¨¼ü-ÖÐÎÄ·­ÒëÍêÕû°æ

Torque, lb-inches

Fig. 3. Chart for Estimating Involute Spline Size Based on Diameter-Torque Relationships

Pitch Diameter inches

Maximum Effective Length Le, inches

Fig. 4. Maximum Effective Length for Fixed and Flexible Spline

s

Length of Splines: Fixed splines with lengths of one-third the pitch diameter will have the same shear strength as the shaft, assuming uniform loading of the teeth;

however, errors in spacing of teeth result in only half the teeth being fully loaded. Therefore, for balanced strength of teeth and shaft the length should be two-thirds the pitch diameter. If weight is not important, however, this may be increased to equal the pitch diameter. In the case of flexible splines, long lengths do not contribute to load carrying capacity when there is misalignment to be accommodated. Maximum effective length for flexible splines may be approximated from Fig. 4.

»¨¼ü³¤¶È£º¼Ù¶¨»¨¼ü³Ý¾ùÔÈÊÜÔØ£¬³¤¶ÈΪ½ÚÔ²Ö±¾¶1/3µÄ¹Ì¶¨Ê½»¨¼ü½«¾ßÓÐÓëÖáµÈͬµÄ¼ôÇÐÓ¦Á¦£»µ«»¨¼ü³Ý³Ý²ÛµÄÎó²î»áµ¼ÖÂÖ»ÓÐÒ»°ëµÄ»¨¼ü³ÝÈ«²¿ÊÜÔØ¡£Òò´Ë£¬ÎªÆ½ºâ»¨¼ü³ÝºÍÖáµÄÊÜÁ¦£¬³¤¶ÈÓ¦µ±µÈÓÚ½ÚÔ²Ö±¾¶µÄ2/3¡£Èç¹ûÖØÁ¿²»ÖØÒª£¬¾Í¿ÉÒÔÔö¼ÓÖÁµÈÓÚ½ÚÔ²Ö±¾¶µÄ³¤¶È¡£¶ÔÓÚÈáÐÔ»¨¼ü£¬µ±´æÔÚ²»Í¬ÐĵÄÇé¿öÏ£¬Ôö¼Ó³¤¶È²¢²»ÄÜ´øÀ´¸ü¶à¸ºÔØÄÜÁ¦¡£ÈáÐÔ»¨¼üµÄ×î´ó×÷Óó¤¶È¿ÉÒÔ°´Í¼4Ñ¡Ôñ½üËÆÖµ¡£

Formulas for Torque Capacity of Involute Splines.¡ª The formulas for torque capacity of 30-degree involute splines given in the following paragraphs are derived largely from an article ¡°When Splines Need Stress Control¡± by D. W. Dudley, Product Engineering, Dec.23, 1957.

½¥¿ªÏß»¨¼üŤ¾ØÄÜÁ¦¹«Ê½¡ªÏÂÁжÎÂäÖиø³öµÄ 30 ¶È½¥¿ªÏß»¨¼ü¹«Ê½´ó²¿·ÖÀ´Ô´ÓÚÎÄÕ¡°»¨¼üºÎʱÐèÒªÓ¦Á¦¿ØÖÆ¡±£¨×÷Õß D.W.Dudley£¬ÖÆÔ칤³Ì£¬1957-12-23£©¡£

In the formulas that follow the symbols used are as defined on page 2161 with the following additions: Dh = inside diameter of hollow shaft, inches; Ka = application factor from Table 7; Km = load distribution factor from Table 8; Kf = fatigue life factor from Table 9; Kw= wear life factor from Table 10; Le = maximum effective length from Fig. 4, to be used in stress formulas even though the actual length may be greater; T = transmitted torque, pound-inches. For fixed splines without helix modification, the effective length Le should never exceed 5000 D3.5 ¡Â T.

¹«Ê½ÖеķûºÅÔÚ 2161Ò³É϶¨ÒåµÄ£¬ÏÂÁÐΪÔö¼ÓµÄ²¹×¢£ºDh=¿ÕÐÄÖáµÄÄÚ¿×Ö±¾¶£¬Ó¢´ç£»Ka=Ó¦ÓÃϵÊý£¬´Ó±í7ÖÐÑ¡Ôñ£»Km£½¸ººÉ·Ö²¼ÏµÊý£¬´Ó±í8ÖÐÑ¡Ôñ£»Kf£½Æ£ÀÍÊÙÃüϵÊý£¬´Ó±í9ÖÐѡȡ£»Kw£½Ä¥ËðÊÙÃüϵÊý£¬´Ó±í10ÖÐѡȡ£»Le£½Í¼4ÖеÄ×î´ó×÷Óó¤¶È£¬¾¡¹Üʵ¼Ê³¤¶È¿ÉÄܸü³¤Ò»Ð©£¬ÈÔ¿ÉʹÓÃÓ¦Á¦¹«Ê½£»T£½´«µÝŤ¾Ø£¬°õ-Ó¢´ç¡£¶ÔÓÚûÓÐÂÝÐýÏß±äλµÄ¹Ì¶¨Ê½»¨¼ü£¬ÓÐЧ³¤¶ÈLeÓ¦µ±²»³¬¹ý 5000 D3.5¡ÂT¡£

Table 7. Spline Application Factors, Ka Power Source ¶¯Á¦Ô´ Type of LoadÔØºÉÖÖÀà Light Shock Intermittent Shock Uniform (Oscillating (Actuating Pumps, (Generator, Fan) Pumps, etc.) Çá΢etc.) ¼äЪ³å»÷£¨¼ÓËÙÆ½ÎÈ£¨·¢µç»ú·çÉÈ£© ³å»÷£¨Õñ¶¯±ÃµÈ£© ±ÃµÈ£© Application Factor, KaʹÓÃϵÊý 1.0 1.2 2.0 1.2 1.3 2.2 1.5 1.8 2.4 Heavy Shock (Punches, Shears, etc.) ÖØ³å»÷£¨³å´²£¬¼ô×ӵȣ© 1.8 2.1 2.8 Uniform (Turbine, Motor) ͬ²½»ú£¨ÎÐÂÖ»ú£¬µç»ú£© Light Shock (Hydraulic Motor) Çá΢³å»÷£¨ÒºÑ¹Âí´ï£© Medium Shock (Internal Combustion, Engine)Öеȳå»÷£¨ÄÚȼ»ú£¬ÒýÇæ£© Table 8. Load Distribution Factors, Km, for Misalignment of Flexible Splines Misalignment, inches per inch Load Distribution Factor, Kma ÿӢ´ç³¤¶ÈÉϲ»¶ÔÖÐ¶È 0.001 0.002 0.004 0.008 1/2-in. Face Width2 1 1 1 1 1/2 1-in. Face Width 1 1 1 1/2 2 2-in. Face Width 1 1 1/2 2 2 1/2 4-in. Face Width 1 1/2 2 2 1/2 3 a For fixed splines,

¶ÔÓڹ̶¨µÄ»¨¼üKm=1.

Table 9. Fatigue-Life Factors, Kf, for Splines No. of Torque Cyclesa aŤ¾ØÑ­»·ÖÜÆÚ 1,000 10,000 100,000 1,000,000 10,000,000 Fatigue-Life Factor, KfÆ£ÀÍÊÙÃüϵÊý Unidirectionalµ¥Ò»·½Ïò 1.8 1.0 0.5 0.4 0.3 Fully-reversedË«Ïò 1.8 1.0 0.4 0.3 0.2 a A torque cycle consists of one start and one stop, not the number of revolutions.

Ò»¸öŤ¾ØÑ­»·ÖÜÆÚ°üÀ¨Ò»¸öÆðÍ££¬²»ÊÇ»Ø×ªµÄÊýÁ¿¡£

Table 10. Wear Life Factors, Kw, for Flexible

Splines Number of Revolutions of Spline »¨¼üÔËתÊýÁ¿ 10,000 100,000 1,000,000 10,000,000 Life Factor,£¬Kw ÊÙÃüϵÊý 4.0 2.8 2.0 1.4 Number of Revolutions of Spline 100,000,000 1,000,000,000 10,000,000,000 ¡­ Life Factor, Kw 1.0 0.7 0.5 ¡­ Wear life factors, unlike fatigue life factors given in Table 9, are based on the total number of revolutions of the spline, since each revolution of a flexible spline results in a complete cycle of rocking motion which contributes to spline wear.

Ä¥ËðÊÙÃüϵÊý£¬²»ÊÇ»ùÓÚ»¨¼üµÄÔËת×ÜÊýÁ¿£¬Èç±í9ÖÐµÄÆ£ÀÍϵÊý¡£ÒòΪÈáÐÔ»¨¼üµÄÿһתµÄ³å»÷¶¼»áÔì³É»¨¼üµÄÄ¥Ëð¡£

Definitions: A fixed spline is one which is either shrink fitted or loosely fitted but piloted with rings at each end to prevent rocking of the spline which results in small axial movements that cause wear. A flexible spline permits some rocking motion such as occurs when the shafts are not perfectly aligned. This flexing or rocking motion causes axial movement and consequently wear of the teeth. Straight-toothed flexible splines can accommodate only small angular misalignments (less than 1 deg.) before wear becomes a serious problem. For greater amounts of misalignment (up to about 5 deg.), crowned splines are preferable to reduce wear and end-loading of the teeth. ¶¨Ò壺һ¸ö¹Ì¶¨»¨¼ü¿ÉÒÔÊǽôÅäºÏ»òËÉÅäºÏ£¬µ«ÔÚÿһ¶Ë¶¼Óû·¹Ì¶¨ÒÔ·ÀÖ¹ÓÉÓÚ»¨¼üµÄÄ¥ËðÒýÆðÖáÏòµÄÒÆ¶¯¶ø²úÉúµÄÌø¶¯¡£Ò»¸öÈáÐÔ»¨¼üÔÊÐíһЩÔÚÖáûÓÐ׼ȷ¶ÔÖÐʱ²úÉúµÄÌø¶¯¡£ÕâЩÇüÄÓ»òÌø¶¯ÒýÆðÖáÏòÎ»ÒÆ£¬´Ó¶øÄ¥Ëð³ÝÐΡ£Ö±³ÝÈáÐÔ»¨¼üµÄÖ»ÓÐÔÚºÜСµÄÆ«ÐĽǶÈ״̬£¨Ð¡ÓÚ1¶È£©£¬Ä¥Ëð²Å²»»áºÜÑÏÖØ¡£¶ÔÓÚ¸ü¶àµÄÆ«ÐÄÇé¿ö£¨´óÓÚ5¶È£©£¬¹ÄÐγݻ¨¼ü¿ÉÒÔ¸üºÃµØ¼õСĥËðºÍ»¨¼ü³Ý¶Ë²¿ÊÜÔØ¡£

Shear Stress Under Roots of External Teeth: For a transmitted torque T, the torsional shear stress induced in the shaft under the root diameter of an external spline is:

Í⻨¼ü³Ý¸ù²¿µÄ¼ôÇÐÓ¦Á¦£º¶ÔÓÚÒ»¸ö¸ø¶¨µÄ´«µÝŤ¾ØT£¬ÔÚÍ⻨Öá³Ý¸ù´¦²úÉúµÄŤת¼ôÇÐÓ¦Á¦Îª£º

16TKafor a solid shaft ÓÃÓÚʵÐÄÖá S s ? 3 £¨1£©

?DreKf 16TDreKafor a hollow shaft ÓÃÓÚ¿ÕÐÄÖá S s ? 4£¨2£©

?(Dre?Dh4)Kf

The computed stress should not exceed the values in Table 11. ¼ÆËãÓ¦Á¦Öµ²»Äܳ¬¹ý±í11ÖеÄÖµ¡£

Table 11. Allowable Shear, Compressive, and Tensile Stresses for Splines Material ²ÄÁÏ Max. Allowable Stress ×î´óÔÊÓ¦Á¦ Compressive Stress, psi Shear Stress, psi Tensile Stress, psi ѹËõÓ¦Á¦ ¼ôÇÐÓ¦Á¦ À­ÉýÓ¦Á¦ Brinell²¼ÊÏ Rockwell CÂåÊÏ StraightÖ±µÄ Crowned¹ÄµÄ Hardness Ó²¶È 160¨C200 230¨C260 302¨C351 ¡ª ¡ª ¡ª ¡ª ¡ª 33¨C38 48¨C53 58¨C63 42¨C46 20,000 30,000 40,000 40,000 50,000 45,000 1,500 2,000 3,000 4,000 5,000 ¡ª 6,000 8,000 12,000 16,000 20,000 ¡ª 22,000 32,000 45,000 45,000 55,000 50,000 Steel ¸Ö Surface-hardened Steel ±íÃæ´ãÓ²¸Ö Case-hardened Steel ±íÃæÉøÌ¼Ó²»¯¸Ö Through-hardened Steel (Aircraft Quality) ÕûÌå´ãÓ²¸Ö(º½¿ÕÖÊÁ¿) Shear Stress at the Pitch Diameter of Teeth: The shear stress at the pitch line of the teeth for a transmitted torque T is:

³Ý½ÚÔ²´¦µÄ¼ôÇÐÓ¦Á¦£º¶ÔÓÚÒ»¸ö¸ø¶¨µÄ´«µÝŤ¾Ø T£¬³Ý½Ú½ÚÔ²´¦µÄ¼ôÇÐÓ¦Á¦Îª£º 4TKaKmSs? £¨ 3 £©

DNLetKf

The factor of 4 in (3) assumes that only half the teeth will carry the load because of spacing errors. For poor manufacturing accuracies, change the factor to 6.

¹«Ê½£¨3£©ÖÐϵÊý4ÊǼÙÉèÓÉÓڳݲ۵ļä϶¶øÖ»ÓÐÒ»°ë»¨¼ü³Ý³ÐÔØ¡£¶ÔÓÚ¸üµÍµÈ¼¶µÄÖÆÔ쾫¶È£¬½«ÏµÊý¸ÄΪ 6¡£

The computed stress should not exceed the values in Table 11. ¼ÆËãÓ¦Á¦Öµ²»Äܳ¬¹ý±í11ÖÐÖµ¡£

Compressive Stresses on Sides of Spline Teeth: Allowable compressive stresses on splines are very much lower than for gear teeth since non-uniform load distribution and misalignment result in unequal load sharing and end loading of the teeth.

»¨¼ü³Ý²àѹËõÓ¦Á¦£ºÓÉÓÚ²»¾ùÔȵÄÔØºÉ·Ö²¼ºÍÆ«ÐÄÔì³ÉµÄ²»¾ù¸ºÔغͳݶËÊÜÔØ£¬»¨¼üµÄÐíÓÃѹËõÓ¦Á¦Öµ±È£¨ÀíÂÛÖµ£©ÒªÐ¡µÃ¶à¡£ 2TKaKm? £¨ For flexible splines,¶ÔÓÚÈáÐÔ»¨¼ü S c 4 £© DNLehKw

2TKaKm For fixed splines, ¶ÔÓڹ̶¨»¨¼ü S c ? £¨ 5£©

9DNLhK e f

In these formulas, h is the depth of engagement of the teeth, which for flat root splines is 0.9/P and for fillet root splines is 1/P, approximately.

¹«Ê½ÖУ¬h ÊÇ»¨¼ü³ÝµÄ½ÓºÏ³¤¶È£¬¶ÔÓÚÆ½³Ý¸ù»¨¼ü£¬hԼΪ 0.9/P£¬¶ÔÓÚÔ²³Ý¸ù»¨¼ü£¬hԼΪ1/P¡£

The stresses computed from Formulas (4) and (5) should not exceed the values in Table 11.

¹«Ê½£¨4£©ºÍ¹«Ê½£¨5£©ÖмÆËã³öµÄÓ¦Á¦Öµ²»Äܹ»³¬¹ý±í11ÖеÄÖµ¡£

Bursting Stresses on Splines: Internal splines may burst due to three kinds of tensile stress: 1) tensile stress due to the radial component of the transmitted load; 2) centrifugal tensile stress; and 3) tensile stress due to the tangential force at the pitch line causing bending of the teeth.

»¨¼üµÄ¿¹ÁÑÓ¦Á¦£ºÄÚ»¨¼ü¿ÉÄÜÓÉÓÚÏÂÁÐÈýÖÖÀ­Ó¦Á¦¶øÆÆ»µ£º1£©´«µÝŤ¾ØÖвúÉúµÄ¾¶Ïò·Ö½âÁ¦ÒýÆðµÄÀ­ÉìÁ¦£»2£©ÀëÐÄÁ¦£» 3£©½ÚÔ²ÏßÉÏÓÉÓÚ³ÝÍäÇú¶øÔì³ÉµÄÀ­ÉìÁ¦¡£

Ttan?Radial load tensile stress, ¾¶Ïò¸ººÉÀ­ÉìÓ¦Á¦£¬ (6) S1? ? Dt w L

where tw = wall thickness of internal spline = outside diameter of spline sleeve minus spline major diameter, all divided by 2. L = full length of spline.

ÕâÀtW=ÄÚ»¨¼üµÄ±Úºñ£½ÄÚ»¨¼üͲµÄÍâ¾¶¼õÈ¥»¨¼ü´ó¾¶£¬ºóÔÙ³ý 2¡£L£½»¨

¼üµÄ×ܳ¤£¬

2221.6556?(rpm)(Doi?0.212Dri)Centrifugal tensile stress, ÀëÐÄÀ­ÉìÓ¦Á¦ S2?1,000,000(7)

where Doi = outside diameter of spline sleeve. Doi£½»¨¼üÌ×ͲµÄÍâ¾¶¡£

4TBeam loading tensile stress, ÁºÀ­ÉìÓ¦Á¦£¬ (8) S3?2DLeY

In Equation (8), Y is the Lewis form factor obtained from a tooth layout. For internal splines of 30-deg. pressure angle a value of Y= 1.5 is a satisfactory estimate. The factor 4 in (8) assumes that only half the teeth are carrying the load.

ÔÚÕâ¸öµÈʽ£¨8£©ÖУ¬YÊÇ»¨¼üÉè¼ÆµÃµ½µÄÒ»¸öÁõÒ×˹ÐÎ״ϵÊý¡£¶ÔÓÚ 30 ¶ÈѹÁ¦½ÇµÄÄÚ»¨¼üY£½1.5ÊÇÒ»¸öºÜ±£ÊصĹÀ¼ÆÖµ¡£ÏµÊý4¼Ù¶¨Ö»ÓÐÒ»°ë»¨¼ü³Ý³ÐÊÜÔØºÉ¡£

The total tensile stress tending to burst the rim of the external member is: and should be less than those in Table 11.

Ôì³ÉÍ⻨¼üµÄÂÖÔµÆÆ»µµÄ×ܵÄÀ­ÉìÓ¦Á¦ÊÇ£º St = [KaKm (S1 + S3) + S2]/Kf; ²¢ÇÒ¸ÃֵӦСÓÚ±í11ÖÐÖµ¡£

Crowned Splines for Large Misalignments.¡ª As mentioned on page 2173, crowned splines can accommodate misalignments of up to about 5 degrees. Crowned

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4