2019年七年级数学下册 7.1 平面直角坐标系导学案(新版)新人教
版
[学习目标]
1. 理解有序数对的应用意义,了解平面上确定点的常用方法 2. 培养学生用数学的意识,激发学生的学习兴趣. [学习重点与难点]
重点:有序数对及平面内确定点的方法. 难点:利用有序数对表示平面内的点. 学习方法:
先读书,再独立完成导学案中的要求,对学习中遇到的不理解的地方或有独到见解的地方和同学交流讨论。也可以和老师讨论。
学习过程
一、仔细阅读39页第一段和第二段内容并观察教材第39页的插图,说说“7排9号”和“9排7号”的位置有什么区别?
二、中期考试后我们班要开家长会,家长的座位如果安排到你的座位上,你如何让你的家长找到你的座位。(假如教室的座位按以前的摆放)
三、教材第39页图6. 1-1中的(1,5),(2,4),(4,2),(5,6),(3,3),(6,2).的同学你能找到吗?(请在书上标出来) 四、40页思考中的问题你能解决吗,
解决完思考中的问题后,请回答什么叫“有序数对”,“有序”是什么意思?“数对”呢? 五、请举出生活中利用有序数对的例子。 六、布置作业 1、完成练习,(做到书上)
2、必做题:教材第49页习题6. 1第1题(口答题改为笔答题);第46页变换甲乙的位置后,要求既在图上画出从甲到乙的路线,又用教材的方法表示出从甲到乙的路线.
3、选做题:在下图中,甲从(4,2)的位置出发,按(2,2)->(2,6)->(5,6) ->(5,1)->(8,1)->(8,4)->(2,4)的路线行走,请你在图2中画出这条路线.
谈谈这节课后的收获:
7.1.1有序数对(2)
学习目标:1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体-抽象-具体”的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
学习重点:理解有序数对的概念,用有序数对来表示位置。 学习难点:理解有序数对是“有序的”并用它解决实际问题, 学习过程: 一、课前预习
预习疑难: 。 二、探索与思考
1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?
2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?
(1)如何找到6排3号这个座位呢?
(2)在电影票上“6排3号”与“3排6号”有什么不同? (3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示? (4)(5,6)表示什么含义?(6,5)呢?
3、结论:①可用排数和列数两个不同的数来确定位置;
②排数和列数的先后顺序对位置有影响。
4、概念:
有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。 三、理解与运用 (一)用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的? (二)应用 6大道A例1 如图,点A表示3街与5大道的十字5大道路口,点B表示5街与3大道的十字路口,4大道B如果用(3,5)→(4,5)→(5,5)→(5,3大道4)→(5,3)表示由A到B的一条路径,那2大道么你能用同样的方法写出由A到B的其他几条1大道1街2街3街4街5街6街路径吗?
分析:图中确定点用前一个数表示大街,后一个数表示大道。 解:其他的路径可以是:
(3,5)→(4,5)→(4,4)→(5,4)→(5,3); (3,5)→( ,5)→(4,4)→( , )→(5,3); (3,5)→( , )→( , )→( , )→(5,3); 四、学习体会:
1、 本节课你有哪些收获?你还有哪些疑惑? 2、 预习时的疑难解决了吗? 五、自我检测 1、小游戏:
“怪兽吃豆豆”是一种计算机游戏,图中的标志表示“怪兽”先后经过的几个位置. 如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中“怪兽”经过的其他几个位置吗?
2、如图,马所处的位置为(2,3). 象马(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
69874532
3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图六(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少。
要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)
(1) 下面提供另一走法,请填上所缺的一步:(四,6)→(五,8)→(七,7)→___→(六,4) (2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:
54321