OPENSEES

OPENSEES

opensees中的单元问题 梁柱单元

1. Nonlinear BeamColumn

基于有限单元柔度法理论。允许刚度沿杆长变化,通过确定单元控制截面各自的截面抗力和截面刚度矩阵,按照Gauss-Lobatto积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。NonlinearBeamColumn单元对于截面软化行为,构件反应由单元积分点数控制,为保证不同积分点数下构件反应的一致性,可以通过修正材料的应力-应变关系来实现,但同时会造成截面层次反应的不一致,因此需要在截面层次进行二次修正。一根构件不需要单元划分,使用1个单元即可,建议单元内使用4个截面积分点,截面上使用6*6的纤维积分点。

[5]

2. Displacement – Based BeamColumn

基于有限单元刚度法理论。允许刚度沿杆长变化,按照Gauss -Legendre积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。

Displacement - BasedBeam- Column单元对于截面软化行为,构件反应由遭受软化行为的单元长度控制,为保证计算结果的精确性,一般需要将构件离散为更多的单元,而截面层次的反应与构件的单元离散数无关,可以较为准确地反应截面的软化行为。

建议一根构件划分为5个单元,单元内使用4个截面积分点,截面上使用6*6的纤维积分点。[5]

3. Beam With Hinges

基于有限单元柔度法理论。假定单元的非弹性变形集中在构件的两端,在杆件端部设置2个积分控制截面,并设定恰当的塑性铰长度,按照Gauss - Radau积分方法沿塑性铰长度积分来模拟构件和整体结构的非线性反应特点,而杆件中部的区段仍保持弹性。

LP塑性铰长度。

通过对BeamWithHinges单元的积分方法进行修正,保证塑性铰区只存在一个积分点,BeamWithHinges单元对于截面软化行为可以在单元层次和截面层次准确地进行描述。[1]建议预设合理的塑性铰长度,截面上使用6*6的纤维积分点。[5]

纤维模型

纤维模型是指将纤维截面赋予梁柱构件(即定义构件的每一截面为纤维截面),纤维截面是将构件截面划分成很多小纤维(包括钢筋纤维和混凝土纤维)对每一根纤维只考虑它的轴向本构关系,且各个纤维可以定义不同的本构关系。纤维模型假定构件的截面在变形过程中始终保持为平面,这样只要知道构件截面的弯曲应变和轴向应变就可以得到截面每一根纤维的应变,从而可以计算得到截面的刚度。纤维模型能很好的模拟构件的弯曲变形和轴向变形,但不能模拟构件的剪切非线性和扭曲非线性。

零长度构件

可以赋予零长度构件BARSLIPMaterial(这种材料的本构关系可以精确模拟循环加载时在构件节点处由于钢筋的滑移和混凝土的开裂所引起的构件的刚度退化和强度退化现象)来模拟构件节点处的变形,另外用Bond-SP01Material可以模拟节点处钢筋的应力渗透现象(节点处钢筋还没有整体滑移)所引起的构件的强度和刚度变化。

OPENSEES中零长度构件虽然在建模时是零长度,但在计算这种构件变形时却是取其长度为单位长度。计算时将零长度截面的弯曲曲率乘以1得到构件的弯曲变形。

梁柱构件

建模时核心区混凝土轴心抗压强度增大百分之40,以考虑箍筋对核心混凝土的强度和延性的增加。或者取柱构件受约束混凝土的强度增加系数K=1.2;

[3]

剪力墙

基于纤维截面来模拟,定义一种专门用来模拟构件截面剪切应变的材料,将此材料组合到纤维截面中,组合截面的应变为纤维截面应变与剪切材料应变的叠加,将构件的剪切柔度矩阵与构件的弯曲和轴向柔度矩阵叠加就可以求得构件考虑剪切变形的柔度矩阵。

因为纤维模型的求解是基于平面假设,而剪力墙构件变形很大时其截面显然不会保持平面,所以还是有一定的误差。HystereticMaterial模拟构件截面剪切变形的应力-应变关系。通过减小钢筋的屈服后刚度模拟实际情况。(实际构件在变形时并不是平截面假定,如果按照同等位移的话,那么将会增加约束,使结构偏小。)抵消由于平面假设所引起的刚度增加。经过试验与计算结构的比较,认为将构件截面钢筋纤维屈服后刚度降低百分之30~40时,计算结果与试验结果符合的较好。

[2]

单元参数问题

积分点数目

单个构件为3~5个,杆件两端设置2个,中间均布2~3个。混凝土本构模型中是否考虑受拉区段对构件的滞回性能影响不大,对圆钢管混凝土柱进行数值模拟时,混凝土本构模型宜采用Mander本构模型。在混凝土本构关系相同的条件下,钢材本构关系中的强化段对柱试件滞回性能的影响显著 由分析可知,不宜考虑钢材的强化段,否则会使数值计算结果高于试验测试结果。

对于纤维截面网格划分,径向环向划分的段数在6~20为宜,钢材和混凝土可分别划分,亦可以统一划分。

[4]

附录

1. OpenSees中三种非线性梁柱单元的研究 2. OPENSEES中纤维模型的研究

3. 基于OPENSEES的钢筋混凝土柱非线性有限元分析

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4