高考数学(人教a版理科)一轮复习真题演练集训:第四章 三角函数与解三角形 4-7 word版含答案

真题演练集训

1

1.钝角三角形ABC的面积是,AB=1 ,BC=2,则AC=( )

2A.5 C.2 答案:B

11

解析:由题意可得AB·BC·sin B=,

22又AB=1 ,BC=2,所以sin B=所以B=45°或B=135°. 当B=45°时,由余弦定理可得

2

, 2

B.5 D.1

AC=AB2+BC2-2AB·BC·cos B=1,

此时AC=AB=1,BC=2,易得A=90°,与“钝角三角形”条件矛盾,舍去.所以B=135°.

由余弦定理可得

AC=AB2+BC2-2AB·BC·cos B=5.

2.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.

答案:3

解析:∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可

sin Asin Bsin C化为(a+b)(a-b)=(c-b)c,∴a-b=c-bc,∴b+c-a=bc.

2

2

2

2

2

2

abcb2+c2-a2bc1∴===cos A,∴A=60°.

2bc2bc2

∵△ABC中,4=a=b+c-2bc·cos 60°=b+c-bc≥2bc-bc=bc(当且仅当b=c时等号成立),

113

∴S△ABC=·bc·sin A≤×4×=3.

222

45

3.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b513=________.

21

答案:

13

2

2

2

2

2

45

解析:解法一:因为cos A=,cos C=,

513312

所以sin A=,sin C=,

513

从而sin B=sin(A+C)=sin Acos C+cos Asin C 3541263

=×+×=. 51351365

abasin B21

由正弦定理=,得b==.

sin Asin Bsin A13

45

解法二:因为cos A=,cos C=,

513312

所以sin A=,sin C=,

513

4531216

从而cos B=-cos(A+C)=-cos Acos C+sin Asin C=-×+×=.

51351365

acasin C20

由正弦定理=,得c==.

sin Asin Csin A13

21222

由余弦定理b=a+c-2accos B,得b=.

13

45312

解法三:因为cos A=,cos C=,所以sin A=,sin C=,

513513

acasin C20

由正弦定理=,得c==.

sin Asin Csin A13

21

从而b=acos C+ccos A=.

13解法四:如图,作BD⊥AC于点D,

5512

由cos C=,a=BC=1,知CD=,BD=. 1313134316

又cos A=,所以tan A=,从而AD=.

5413

21

故b=AD+DC=.

13

4.△ABC的内角A,B

>>灞曞紑鍏ㄦ枃<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4