继电保护课后答案

G1T1A1B23CT3T2

图2-17 系统接线图

答:(1)零序等值网络及零序参数的组成:

以线路AB末端发生单相接地为例,中性点直接接地系统零序等值图如图2—18所示。

由图2—18可见,从故障点看进去的零序阻抗为母线B引出的三个分支的并联,等值阻抗值较小,出现单相接地后系统中会有较大的零序电流。

中性点非直接接地系统,零序网络由同级电压网络中元件对地的等值电容构成通路,其零序等值图如图2—19所示。

X0.T1ABX0.ABX0.BCX0.T3X0.T2U0?

图2-18 线路AB末端故障时中性点直接接地系

统零序等值图

- 31 -

X0.T1X0.ABX0.BCX0.T3C0.BCC0.ABC0

图2-19中性点非直接接地系统

零序等值图

由图2—19可见,故障点的等值阻抗为三个对地容抗的并联,由于分布电容的容值较小、阻抗较大,因此故障点的零序等值阻抗也较大,接地不会产生较大的零序电流。 零序电压分布规律:

中性点直接接地系统中,故障点零序电压最高,距离距离故障点越远下降越多,在变压器中性点处降为0。

在中性点非直接接地系统中,若不计微小的零序电容电流在线路阻抗上产生的微小压降,则统一电压等级的整个系统的零序电压都一样(及三相变压器之间的一部分系统)。 (3)零序电流的大小及流动规律:

中性点直接接地系统中,零序电流的大小同系统的运行方式和系统各部分的零序阻抗的大小都有关系,零序电流在故障点与变压器中性点之间形成回路。

非直接接地系统中,零序电流的大小依赖于系统地相电动势和线路的对地电容。零序电流从故障点流出通过线路的对地电容流回大地。非故障元件的零序电流就是该线路本身的对地电容电流,故障元件中流过的零序电流,数值为全系统所有非故障元件对地电容电流值之和,再有消弧线圈的情况下,则是全系统所有非故障元件对地电容电流值与消弧线圈中的电感电流值相量和。 (4)故障线路与非故障线路灵虚功率方向:

中性点直接接地系统中,在故障线路上零序功率方向表现为线路流向母线;在非故障线路上,靠近故障点的一侧,零序功率方向由母

- 32 -

线流向线路,而远离故障点的一侧,零序功率方向由线路流向母线。中性点非直接接地系统中,故障线路上电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。 (5)故障电流的大小及流动规律:

中性点直接接地系统中,由于故障点和网络中变压器中性点形成回路,因此故障相电流较大。故障电流有故障电流向中性点。中性点非直接接地系统中,由于不构成短路回路而只经过对地电容形成回路,因此接地相电流很小。由于接地电流相对于负荷电流较小,基本上不影响负荷电流的分布、

(6)故障后电压的变化及对称性变化:

中性点直接接地系统中,故障后三相的相电压和线电压都不在对称。中性点非直接接地系统中,故障后接地相电压降为0,非接地相对于低电压升高至原电压的3倍,但三相之间线电压依然保持对称。 (7)故障对电力系统的危害:

中性点直接接地系统中,故障相电流很大,对系统危害很大。 中性点非直接接地系统中,故障相电流很小,而且三相之间的线电压任然保持对称,对负荷的供电没有影响,一般情况下,对系统危害不大。

(8)对保护切除故障速度的要求:

中性点直接接地系统中,由于接地相电流很大,为防止损坏设备,应迅速切除接地相甚至三相。中性点非直接接地系统中,由于故障点电流很小,切三项之间的线电压仍对称,可以允许再运行1~2h,同时发出信号。

2.23图2—17所示系统中变压器中性点全部不接地,如果发现单相接地,试回答:

(1)比较故障线路与非故障线路中零序电流、零序电压、零序功率方向的差异。

(2)如果在接地电流过的电容电流超过10A(35KV系统)、20A(10KV系统)、30A(3~6KV系统)时,将装设消弧线圈,减小接地电流,叙述用零序电流实现选线的困难。

(3)叙述用零序功率方向实现选线的困难。 (4)叙述拉路停电选线存在的问题。

- 33 -

答:(1)零序电流、零序电压、零序功率的方向:

零序电流:在非故障线路中流过的电流其数值等于本身的对地电容电流,在故障线路

中流过的零序电流数值为全系统所有非故障元件对地电容电流之和。 零序电压:全系统都会出现量值等于相电压的零序电压,个点零序电压基本一样。

零序功率方向:在故障线路上,电容性无功功率方向为线路流向母线;在非故障线路上,电容性无功功率方向为母线流向线路。

(2)装设消弧线圈后,上述零序电流的分布规律发生变化,接地线路中的零序电流为消弧线圈补偿后的参与电流,其量值较小,零序过电流元件将无法整定;零序电流的量值有可能小于非故障线路的零序电流,所以零序电流群体比幅原理也将无法应用。

(3)用零序功率方向选线困难:由于一般采用的是过补偿,流经故障线路的的零序电流是流过消弧线圈的零序电流与非故障元件零序电流之差,而电容无功功率方向是由母线流向线路(实际上是电感性无功功率由线路流向母线),零序功率方向与非故障线路一致,因此无法利用功率方向来判断故障线路。 (4)拉路停电选线存在的问题:

1)需要人工操作,费时、费力,自动化程度低;

2)需要依次断开每一条线路,影响供电可靠性,若重合闸拒动,可能造成较长时间的停电。

2.24 小结下列电流保护的基本原理、使用网络并阐述其优缺点: (1)相间短路的三段式电流保护; (2)方向性电流保护; (3)零序电流保护; (4)方向性零序电流保护;

(5)中性点非直接接地系统中的电流电压保护。

答:(1)相间保护的三段式保护:利用短路故障时电流显著增大的故障特征形成判据构成保护。其中速断保护按照躲开本线路末端最大短路电流整定,保护本线路的部分;限时速度按保护按躲开下级速度按保护末端短路整定,保护本线路全长;速断和限时速断的联合工作,

- 34 -

保护本线路短路被快速、灵敏切除。过电流保护躲开最大负荷电流作为本线路和相邻线路短路时的后备保护。

主要优点是简单可靠,并且在一般情况下也能满足快速切出故障的要求,因此在电网中特别是在35KV及以下电压等级的网络中获得了广泛的应用。

缺点是它的灵敏度受电网的接线以及电力系统的运行方式变化的影响。灵敏系数和保护范围往往不能满足要求,难以应用于更高等级的复杂网路。

(2)方向性电流保护:及利用故障是电流复制变大的特征,有利用电流与电压间相角的特征,在短路故障的流动方向正是保护应该动作的方向,并且流动幅值大于整定幅值时,保护动作跳闸。适用于多断电源网络。

优点:多数情况下保证了保护动作的选择性、灵敏性和速动性要求。 缺点:应用方向元件是接线复杂、投资增加,同时保护安装地点附近正方向发生是你想短路时,由于母线电压降低至零,方向元件失去判断的依据,保护装置据动,出现电压死区。

(3)零序电流保护:正常运行的三相对称,没有零序电流,在中性点直接接地电网中,发生接地故障时,会有很大的零序电流。故障特征明显,利用这一特征可以构成零序电流保护。适用网络与110KV及以上电压等级的网络。

优点:保护简单,经济,可靠;整定值一般较低,灵敏度较高;受系统运行方式变化的影响较小;系统发生震荡、短时过负荷是不受影响;没有电压死区。

缺点:对于短路线路或运行方式变化较大的情况,保护往往不能满足系统运行方式变化的要求。随着相重合闸的广泛应用,在单项跳开期间系统中可能有较大的零序电流,保护会受较大影响。自耦变压器的使用使保护整定配合复杂化。

(4)方向性零序电流保护:在双侧或单侧的电源的网络中,电源处变压器的中性点一般至少有一台要接地,由于零序电流的实际流向是由故障点流向各个中性点接地的变压器,因此在变压器接地数目比较多的复杂网络中,就需要考虑零序电流保护动作的方向性问题。利用正方向和反方向故障时,零序功率的差别,使用功率方向元件闭锁可能误动作的保护,从而形成方向性零序保护。

优点:避免了不加方向元件,保护可能的误动作。其余的优点同零序

- 35 -

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4