卡尔曼滤波简介与C——C++算法实现代码

memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A)); memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H)); memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q)); memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));

memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R)); //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) ); //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));

//cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );

/* choose initial state */

state->data.fl[0]=x; state->data.fl[1]=xv; state->data.fl[2]=y; state->data.fl[3]=yv;

cvkalman->state_post->data.fl[0]=x; cvkalman->state_post->data.fl[1]=xv; cvkalman->state_post->data.fl[2]=y; cvkalman->state_post->data.fl[3]=yv;

cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 ); cvRand( &rng, process_noise );

}

CvPoint2D32f kalman::get_predict(float x, float y){

/* update state with current position */ state->data.fl[0]=x; state->data.fl[2]=y;

/* predict point position */ /* x'k=A鈥k+B鈥k P'k=A鈥k-1*AT + Q */

cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );

cvRand( &rng, measurement );

/* xk=A?xk-1+B?uk+wk */ cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );

/* zk=H?xk+vk */ cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, mea

>>展开全文<<
12@gma联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4