基于商人过河游戏的数学建模
1 提出问题
文献[1]给出一个智力游戏:“三名商人各带一个随从渡河,一只小船只能容纳二人,由他们自己划行。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。但是如何乘船的大权掌握在商人们手中。商人怎样才能安全渡河呢?”此类智力问题当然可以通过一番思考,拼凑出一个可行的方案来。文献[1]中通过图解法给出了解答,但是当商人数与随从数发生变化,船能容纳的人数不是二人时,图解法就会变得复杂而难以解决问题。
因此,将上述游戏改为n名商人各带一个随从过河,船每次至多运p个人,至少要有一个人划船,由他们自己划行。随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。但是如何乘船的大权掌握在商人们手中。商人怎样才能安全渡河的问题。
除此之外,考虑了随着船载人数的增多,以及商人与仆人的对数增多到多少时,会影响商人的安全渡河的问题。 2 问题分析
由于这个虚拟的游戏已经理想化了,所以不必再作假设。我们希望能找出这类问题的规律性,建立数学模型,并通过计算机编程进行求解。安全渡河游戏可以看做是一个多步决策过程,分
步优化,船由此岸驶向彼岸或由彼岸驶回此岸的每一步,都要对船上的商人和随从做出决策,在保证商人安全的前提下,在有限步内使全部人员过河。用状态表示某一岸的人员状况,决策表示船上的人员情况,可以找出状态随决策变化的规律。问题转化为在状态的允许范围内,确定每一步的决策,最后获取一个全局最优方案的决策方案,达到渡河的目标。
除此以外,我们还要找出,随着船载人数的增加,商人与仆人对数达到多少时,会影响到商人不能安全过河。这里要对船载人数进行限制,因为船载人数过多时,此智力游戏会变得相当复杂,就会失去作为游戏的本来意义。 3 模型构成
记第k次渡河前此岸的商人数为 ,随从数为 , , , 。将二维向量 定义为过程的状态。
安全渡河条件下的状态集合称为允许状态集合,记作S。 当 时, ;当 时, 。
记第k次渡船上的商人数为uk,随从数为vk,将二维向量 定义为决策。允许决策集合记为D,由小船容量知 。
因为k为奇数时,船从此岸驶向彼岸,k为偶数时,船从彼岸驶向此岸,所以状态sk随决策dk变化的规律是 ,此式为状态转移率。制订安全渡河方案归结为如下的多步决策模型:求 ,使状态 按照状态转移率,由初始状态 经有限步r到达状态 。 4 模型求解
用C语言编写一段程序,利用计算机求解上述多步决策问题,程序代码见附件。其算法主要是根据所输入的商人数m,随从数n,小船能载人数p,从s1出发去构造下一个状态s2,再以s2为出发点构造下一个状态,构造过程中避开已构造过的点,如此下去,直到 。若中途受阻不能达到 点,就原路退回,去寻找最近被构造的点的其它可行的临近点,如此以往,如果问题有解,算法会在有限步骤内结束,并给出全部路径,否则,算法给出不能安全渡河的结果。
当船载人数为2时,商人与仆人对数增加至4,可得如下两种方案。
方案一:(4,4)-(3,3)-(4,3)-(4,1)-(4,2)-(2,2)-(3,3),接下?砘嶂馗吹诙?步,导致无限循环,商人无法安全过河。
方案二:(4,4)-(4,2)-(4,3)-(4,2),接下来会重复方案一中的第五步,导致无限循环,商人无法安全过河。 在船载人数为2保持不变时,商人与仆人对数的大于3时,在渡河过程中总会出现循环,均无法安全渡河。
通过计算机程序求解,当船载人数为3时,商人与仆人对数的大于5时,在渡河过程中总会出现循环,均无法安全渡河。 5 模型的评价
该多步决策模型简单,切合实际,易于理解,建立了科学合理的状态转移模型,结合实际情况对模型进行求解,使得模型具