2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编
2.复数
一、选择题 (2017·1)
3?i?( ) 1?iA.1?2i B.1?2i C.2?i D.2?i
(2016·1)已知z?(m?3)?(m?1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞,-3)
(2015·2)若a为实数且(2+ai)(a-2i) = -4i,则a =( )
A.-1
B.0
C.1
D.2
(2014·2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1?2?i,则z1z2?( )
A.- 5
B.5
C.- 4 + i
D.- 4 - i
(2013·2)设复数z满足(1?i)z?2i,则z?( )
A.?1?i
B.?1?i
C.1?i
D.1?i
(2012·3)下面是关于复数z?
P1: |z|=2, A. P2,P3
(2011·1)复数
P2: z2=2i,
2的四个命题中,真命题为( ) ?1?iP3: z的共轭复数为1+i,
P4: z的虚部为-1 . D. P3,P4
B. P1,P2 C. P2,P4
2?i的共轭复数是( ) 1?2i33A.?i B.i C.?i
55
D.i
2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编
2.复数(逐题解析)
(2017·1)D【解析】
3?i?3?i??1?i?4?2i???2?i. 1?i?1?i??1?i?2(2016·1)A解析:∴m?3?0,m?1?0,∴?3?m?1,故选A.
(2015·2)B解析:由已知得4a + (a2 -4)i = -4i,所以4a = 0,a2 -4 = -4,解得a = 0,故选B.
(2014·2)A解析:∵z1?2?i,复数z1,z2在复平面内的对应点关于虚轴对称,∴
z2??2?i,
22∴z1z2?(2?i)(?2?i)?i?2??1?4??5.
(2013·2)A解析:由(1-i)·z=2i,得z=2i2i?1?i??2?2i?==-1+i . 1?i?1?i??1?i?2
(2012·3)C解析:经计算z?2??1?i, ? |z|?2,z2?(?1?i)2=2i,复数z的共轭?1?i复数为?1?i,z的虚部为?1,综上可知P2,P4正确. (2011·1)C解析:
2?i(2?i)(1?2i)=?i,共轭复数为C.
51?2i