1.2简要阐述环境工程学的主要任务及其学科体系。
解:环境工程学作为环境学科的一个重要分支,主要任务是利用环境学科以及工程学的方法,研究环境污染控制理论、技术、措施和政策,以改善环境质量,保证人类的身体健康和生存以及社会的可持续发展。
图1-2是环境工程学的学科体系。
1.3去除水中的悬浮物,有哪些可能的方法,它们的技术原理是什么?
解:去除水中悬浮物的方法主要有:沉淀、离心分离、气浮、过滤(砂滤等)、过滤(筛网过滤)、反渗透、膜分离、蒸发浓缩等。
上述方法对应的技术原理分别为:重力沉降作用、离心沉降作用、浮力作用、物理阻截作用、物理阻截作用、渗透压、物理截留等、水与污染物的蒸发性差异。
1.4空气中挥发性有机物(VOCs)的去除有哪些可能的技术,它们的技术原理是什么?
解:去除空气中挥发性有机物(VOCs)的主要技术有:物理吸收法、化学吸收法、吸附法、催化氧化法、生物法、燃烧法等。 上述方法对应的技术原理分别为:物理吸收、化学吸收、界面吸附作用、氧化还原反应、生物降解作用、燃烧反应。 1.5简述土壤污染可能带来的危害及其作用途径。
解:土壤污染的危害及其作用途径主要有以下几个方面:①通过雨水淋溶作用,可能导致地下水和周围地表水体的污染;②污染土壤通过土壤颗粒物等形式能直接或间接地为人或动物所吸入;③通过植物吸收而进入食物链,对食物链上的生物产生毒害作用等。
1.6环境净化与污染控制技术原理可以分为哪几类?它们的主要作用原理是什么?
解:从技术原理上看,环境净化与污染控制技术原理可以分为“隔离技术”、“分离技术”和“转化技术”三大类。隔离技术是将污染物或者污染介质隔离从而切断污染物向周围环境的扩散,防止污染近一步扩大。分离技术是利用污染物与污染介质或其它污染物在物理性质或化学性质上的差异使其与介质分离,从而达到污染物去除或回收利用的目的。转化技术是利用化学或生物反应,使污染物转化成无害物质或易于分离的物质,从而使污染介质得到净化与处理。
1.7《环境工程原理》课程的任务是什么?
解:该课程的主要任务是系统、深入地阐述环境污染控制工程,即水质净化与水污染控制工程、大气(包括室内空气)污染控制工程、固体废物处理处置与管理和资源化工程、物理性污染(热污染、辐射污染、噪声、振动)控制工程、自然资源的合理利用与保护工程、生态修复与构建工程以及其它污染控制工程中涉及到的具有共性的工程学基础、基本过程和现象以及污染控制装置的基本原理,为相关的专业课程打下良好的理论基础。
第二章质量衡算与能量衡算
2.1某室内空气中O3的浓度是0.08×10-6(体积分数),求: (1)在1.013×105Pa、25℃下,用μg/m3表示该浓度;
(2)在大气压力为0.83×105Pa和15℃下,O3的物质的量浓度为多少? 解:理想气体的体积分数与摩尔分数值相等
由题,在所给条件下,1mol空气混合物的体积为V1=V0·P0T1/P1T0=22.4L×298K/273K=24.45L
所以O3浓度可以表示为
0.08×106mol×48g/mol×(24.45L)1=157.05μg/m3
-
-
(2)由题,在所给条件下,1mol空气的体积为
V1=V0·P0T1/P1T0=22.4L×1.013×105Pa×288K/(0.83×105Pa×273K)=28.82L 所以O3的物质的量浓度为
0.08×106mol/28.82L=2.78×109mol/L
-
-
2.2假设在25℃和1.013×105Pa的条件下,SO2的平均测量浓度为400μg/m3,若允许值为0.14×10-6,问是否符合要求? 解:由题,在所给条件下,将测量的SO2质量浓度换算成体积分数,即
RT?1038.314?298?103
?A??400?10?9?0.15?10?65pMA1.013?10?64大于允许浓度,故不符合要求
如果此方程在因次上是一致的,在国际单位制中A的单位必须是什么? 解:由题易得,A的单位为kg/(m3·K)
2.5一加热炉用空气(含O2 0.21,N2 0.79)燃烧天然气(不含O2与N2)。分析燃烧所得烟道气,其组成的摩尔分数为CO2 0.07,H2O 0.14,O2 0.056,N2 0.734。求每通入100m3、30℃的空气能产生多少m3烟道气?烟道气温度为300℃,炉内为常压。
解:假设燃烧过程为稳态。烟道气中的成分来自天然气和空气。取加热炉为衡算系统。以N2为衡算对象,烟道气中的N2全部来自空气。设产生烟道气体积为V2。根据质量衡算方程,有
0.79×P1V1/RT1=0.734×P2V2/RT2
即
0.79×100m3/303K=0.734×V2/573K
V2=203.54m3
2.8某河流的流量为3.0m3/s,有一条流量为0.05m3/s的小溪汇入该河流。为研究河水与小溪水的混合状况,在溪水中加入示踪剂。假设仪器检测示踪剂的浓度下限为1.0mg/L。为了使河水和溪水完全混合后的示踪剂可以检出,溪水中示踪剂的最低浓度是多少?需加入示踪剂的质量流量是多少?假设原河水和小溪中不含示踪剂。
解:设溪水中示踪剂的最低浓度为ρ
则根据质量衡算方程,有0.05ρ=(3+0.05)×1.0 解之得ρ=61 mg/L
加入示踪剂的质量流量为61×0.05g/s=3.05g/s
2.9假设某一城市上方的空气为一长宽均为100 km、高为1.0 km的空箱模型。干净的空气以4 m/s的流速从一边流入。假设某种空气污染物以10.0 kg/s的总排放速率进入空箱,其降解反应速率常数为0.20h1。假设完全混合,
-
(1)求稳态情况下的污染物浓度;
(2)假设风速突然降低为1m/s,估计2h以后污染物的浓度。 解:(1)设稳态下污染物的浓度为ρ 则由质量衡算得
10.0kg/s-(0.20/3600)×ρ×100×100×1×109 m3/s-4×100×1×106ρm3/s=0
解之得
ρ=1.05×10-2mg/m3
(2)设空箱的长宽均为L,高度为h,质量流量为qm,风速为u。 根据质量衡算方程qm1?qm2?k?V?dm
dt有qm?uLh??k?L2h?d2?Lh?? dt带入已知量,分离变量并积分,得
?36000dt??d?1.05?10?210-6?6.6?10-5??
积分有
ρ=1.15×10-2mg/m3
2.10某水池内有1 m3含总氮20 mg/L的污水,现用地表水进行置换,地表水进入水池的流量为10 m3/min,总氮含量为2 mg/L,同时从水池中排出相同的水量。假设水池内混合良好,生物降解过程可以忽略,求水池中总氮含量变为5 mg/L时,需要多少时间?
解:设地表水中总氮浓度为ρ0,池中总氮浓度为ρ 由质量衡算,得
d?V??
dtqV?0?qV??即
dt?1
d?10?(2??)积分,有
?t0dt??5201
d?10?(2??)求得t=0.18 min
2.11有一装满水的储槽,直径1m、高3m。现由槽底部的小孔向外排水。小孔的直径为4cm,测得水流过小孔时的流速u0与槽内水面高度z的关系u0=0.62(2gz)0.5试求放出1m3水所需的时间。
解:设储槽横截面积为A1,小孔的面积为A2 由题得A2u0=-dV/dt,即u0=-dz/dt×A1/A2 所以有-dz/dt×(100/4)2=0.62(2gz)0.5
即有 -226.55×z-0.5dz=dt
z0=3m