第八章 无穷级数 参考答案
习题8-1 1.(1)
11111?????(1?ln2)2(1?ln3)3(1?ln4)4(1?ln5)5(1?ln6)6
11111 (2)?2?3?4?5?
5555511?31?3?51?3?5?71?3?5?7?9???? (3)?22?42?4?62?4?6?82?4?6?8?10
4272102132162 (4) 2?3?4?5?6?22222n?1
n21(?1)1xn?1n?12.(1); (2); (3); (4)(?1)?; (5)(0.001)n
n2n?1(2n)!2?4?6(2n)?113.(1)2???1; (2)?n?1;
n?2n(n?1)n?12??(3)
?[arctann?arctan(n?1)]?n?1?2.
4. (1) 发散; (2) 收敛; (3) 发散; (4) 收敛;
5. (1) 收敛; (2) 发散; (3) 发散; (4) 发散; (5) 发散; (6) 发散; (7) 收敛
6. (1) 收敛; (2) 收敛; (3) 发散; (4) 发散
习题8-2(A)
1. (1) 发散; (2) 发散; (3) 发散; (4) 收敛; (5) 发散; (6) 收敛
2. (1) 发散; (2) 收敛; (3) 收敛; (4) 收敛 3. (1) 发散; (2) 收敛; (3) 收敛; (4) 收敛
4. (1) 收敛; (2) 发散; (3) 收敛; (4) 发散; (5) 收敛; (6) 收敛; (7) 收敛; (8) 收敛 5.
习题8-2(B)
1.(1) 发散; (2) 收敛; (3)b?a时收敛,b?a时发散,b?a时不定
(4) 收敛; (5)0?a?1时发散,a?1时收敛; (6) 0?a?1时收敛,a?1时发散; (7) 0?a?e时收敛,a?e时发散;
11(8)q?时收敛,q?时发散;
22(9)收敛; (10)发散.
习题8-3(A)
(1) 绝对收敛; (2) 绝对收敛; (3)条件收敛; (4)发散; (5) 绝对收敛; (6) 绝对收敛
习题8-3(B)
1. (1) 绝对收敛; (2) 条件收敛; (3) 条件收敛;
(4) 0?a?1时绝对收敛, 1?a?2时条件收敛, a?2时发散; (5) 绝对收敛;
(6) 当a?1时绝对收敛, 0?a?1时发散, a?1时条件收敛
习题8-4(A) 1. (1) 1, ??1,1? (2) 1, ??1,1? (3) 3, [?3,3) (4)
1?11?,?,? (5) 1, ??1,1? (6) 0,x??1; 2??22?(7) [-4, 6 ) (8) 2, [-2, 2] (9)2,(1?2,1?2) 2. (1) ??1,1?, arctanx; (2) (?1,1), (3) ??1,1?, x?(1?x)ln(1?x)
习题8-4(B) 1111111. (1)3,(-3,3) (2),(?,) (3) ,(?,)
222eee(4)1,(?1,1) (5) c?max(a,b),(?c,c) 2. (1) (?1,1),
22 (2) 1,1,2xarctanx?ln(1?x) ??3(1?x)1
(1?x2)2?x23. ,3; 22(2?x)4.
3 2
习题8-5 (A)
?1.
?1cos(x?0?n2)(x?x0)n; (??,??)
n?0n!??x2n?12. (1)n?1)!, (??,??)
n?1(2?n (2) lna??(?1)n?11(x), (?a,an?1na];
?n (3)
?(?1)n?1(2x)2n?12?(2n)! , (??,??);
? (4) x??(?1)nxnn?2n(n?1), (?1,1];
? (5) x??(2n?1)!!x2n?12n)!!(2n?1), ??1,1?;
n?1(? (6) x??(?1)n2(2n)!n?1(n!)2(x2)2n?1, (?1,1]; ?3. (1) e??(x?1)n, (??,??n?0n!)
1?(?1)n?1 (2) ln10?(x?1)n, (0,2] n?1n1??(?1)n?14. 2??3?(x??)2n?1???(?1)n(x??)2n?n?0(2n)!6??, n?1(2n?1)!6?5.?(?1)nnn?1(x?3), (0,6) n?03?6.
?(11n2n?1?3n?1)(x?4), (?6,?2) n?0
习题8-5 (B)
?1. (1)ln2??1(1?1nn)x ,[?1,1);n?1n2
?(?1)n (2) ?n)!(2n?2)x2n?2,(??,??)
n?0(2(??,??)