高中数学专题训练——古典概型与几何概型

高中数学专题训练——古典概型与几何概型

古典概型与几何概型

【知识网络】

1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本

事件数及事件发生的概率。

2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、

特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 【典型例题】

[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( ) A.

B. C. D.

(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰

子朝上的面的点数分别为X、Y,则的概率为

A.

B.

C.

D.

) (

(3)在长为18cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面

积介于36cm2与81cm2之间的概率为

A. B. C. D.

(4)向面积为S的△ABC内任投一点P,则随机事件“△PBC的面积小于”的概率

为 .

(5)任意投掷两枚骰子,出现点数相同的概率为 .

[例2]考虑一元二次方程x2+mx+n=0,其中m,n的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。

[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过

时即可离去.求两人能会面的概率.

[例4]抛掷骰子,是大家非常熟悉的日常游戏了.

某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.

方案1:总点数是几就送礼券几十元.

总点数 礼券额 2 20 3 30 4 40 5 50 6 60 7 70 8 80 9 90 10 11 12 100 110 120 方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.

总点数 礼券额 2 20 3 40 4 60 5 80 6 100 7 8 9 80 10 60 11 40 12 20 120 100 方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.

总点数 礼券额 2 120 3 100 4 80 5 60 6 40 7 20 8 40 9 60 10 11 12 80 100 120 如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.

【课内练习】

1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组

中去,则这3名同学恰好有2人安排在同一个小组的概率是 (

A.

B.

C.

D.

2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次

摸出1个球,设第1个人摸出的1个球是红球的概率为P1,第8个人摸出红球的概率是P8,则

A.P8=P1

4. 两根相距3m的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大

于1m的概率为

B.P8=P1 B. D.

C.P8=P1

D.P8=0 (

( )

3. 如图,A、B、C、D、E、F是圆O的六个等分点,则转盘指针不落在阴影部分的概率为

A. C.

( )

A. B. C. D.

5. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,

设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 . 6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随

意填写两个答案,则两个答案都选错的概率为 .

7. 在圆心角为150°的扇形AOB中,过圆心O作射线交于P,则同时满足:∠AOP≥45°且

∠BOP≥75°的概率为 .

8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该

招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.

(1)共有多少个基本事件?

(2)小曹能乘上上等车的概率为多少?

9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,求弦长超过半径的倍的概

率.

10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.

①设“VP-ABC≥”的事件为X,求概率P(X);

②设“VP-ABC≥且VP-BCD≥”的事件为Y,求概率P(Y).

古典概型与几何概型

A组

1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为

( ) A. B. C. D. 2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( ) A. B. C. D.

3. 已知椭圆(a>b>0)及内部面积为S=πab,A1,A2是长轴的两个顶点,B1,B2是短轴的两

个顶点,点P是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA1A2为钝角三角形的概率为1; ②△PB1B2为直角三角形的概率为0; ③△PB1B2为钝角三角形的概率为; ④△PA1A2为钝角三角形的概率为; ⑤△PB1B2为锐角三角形的概率为。 A.1 B。2 C。3 D。4

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4