You can take anything from the shelf and read, but please
九年级数学上册第13讲圆的定义及垂径定理课后练习新版苏科
版
题一: 如图,⊙O的直径AB和弦CD相交于E,若AE=2cm,BE=6cm,∠CEA=300,求CD的长.
题二: 如图,半径为2的圆内有两条互相垂直的弦AB和CD,它们的交点E到圆心O的距离等于1,则=( )
A、28 B、26 C、18 D、35
题三: 如图,等腰△ABC内接于半径为5cm的⊙O,AB=AC,且BC是BC边上高的6倍,.求BC的长.
题四: 如图,AB为⊙O的直径,点C在⊙O上,∠BAC的平分线交BC于D,交⊙O于E,且AC=6,AB=8,求CE的长.
This is the picture of the new power stationplease 1 / 3
You can take anything from the shelf and read, but please
九年级数学上册第13讲圆的定义及垂径定理课后练习新版
苏科版
题一: cm
详解:过点O作OF⊥CD于F,连结DO ∵AE=2cm,BE=6cm,∴AB=8cm ∴⊙O的半径为4 cm ∵∠CEA=300,∴OF=1 cm ∴cm
由垂径定理得:CD=2DF=cm题二: A.
详解:如图,连结OA、OC,过O分别作AB、CD的垂线,垂足分别为M、N,则AM=MB,CN=ND. ∵OM⊥MN,ME⊥EN,CN=ND ∴从而即∴故选A. 题三: 6 cm.
This is the picture of the new power stationplease
2 / 3
You can take anything from the shelf and read, but please
详解:连结AO交BC于D,连结BO 由AB=AC得,又O为圆心
由垂径定理可得AO垂直平分BC
∵BC是BC边上高的6倍,设AD=cm,则BD=cm ∴OD=cm
在Rt△BOD中,,解得,(舍去) ∴BD=3 cm,BC=6 cm. 题四: .
详解:连结OE,由得OE垂直平分BC于F,AB为直径,则∠ACB=900,
BC=.∴CF=,EC=
This is the picture of the new power stationplease
3 / 3