ÐźŷÖÎöÓë´¦Àí¿ÎºóϰÌâ´ð°¸

ÐźŷÖÎöÓë´¦Àí¿ÎºóϰÌâ´ð°¸

µÚÎåÕ¿ìËÙ¸µÀïÒ¶±ä»»

1.Èç¹ûһ̨ͨÓüÆËã»úµÄËÙ¶ÈΪƽ¾ùÿ´Î¸´³ËÐèÒª50us£¬Ã¿´Î¸´¼ÓÐèÒª10us£¬ÓÃÀ´¾ÍÉ¢N=1024µãµÄDFT£¬ÎÊ£º

£¨1£©Ö±½Ó¼ÆËãÐèÒª¶àÉÙʱ¼ä£¿ÓÃFFT¼ÆËãÄØ£¿

£¨2£©ÕÕÕâÑù¼ÆË㣬ÓÃFFT¼ÆËã¿ìËÙ¾í»ý¶ÔÐźŽøÐд¦ÀíÊÇ£¬¹À¼Æ¿ÉʵÏÖʵʱ´¦ÀíµÄÐźÅ×î¸ßƵÂÊ£¿ ½â£º

·ÖÎö£ºÖ±½ÓÀûÓÃDFT¼ÆË㣺¸´³Ë´ÎÊýΪN2£¬¸´¼Ó´ÎÊýΪN(N-1)£»

ÀûÓÃFFT¼ÆË㣺¸´³Ë´ÎÊýΪ0.5Nlog2N£¬¸´¼Ó´ÎÊýΪNlog2N£»

£¨1£© Ö±½ÓDFT¼ÆË㣺

¸´³ËËùÐèʱ¼äT1?N2?50us?10242?50us?52.4288s

¸´¼ÓËùÐèʱ¼äT2?N(N?1)?10us?1024(1024?1)?10us?10.47552s ËùÒÔ×Üʱ¼äTDFT?T1?T2?62.90432s

FFT¼ÆË㣺

¸´³ËËùÐèʱ¼äT3?0.5Nlog2N?50us?0.5?1024?log21024?50us?0.256s ¸´¼ÓËùÐèʱ¼äT4?Nlog2N?10us?1024?log21024?10us?0.1024s ËùÒÔ×Üʱ¼äΪTFFT?T3?T4?0.3584s £¨2£© ¼ÙÉè¼ÆËãÁ½¸öN³¤ÐòÁÐx1(n)ºÍx2(n)µÄ¾í»ý

¼ÆËã¹ý³ÌΪÈçÏ£º

µÚÒ»²½£ºÇóX1(k)£¬X2(k)£»ËùÐèʱ¼äΪ2?TFFT

µÚ¶þ²½£º¼ÆËãX(k)?X1(k)?X2(k)£¬¹²ÐèÒªN´Î¸´³ËÔËËã

ËùÐèʱ¼äΪTo?N?50us?1024?50us?0.0512s

µÚÈý²½£º¼ÆËãIFFT(X(k))£¬ËùÐèʱ¼äΪTFFT

ËùÒÔ×Üʱ¼äΪT?2?TFFT?To?3?0.3584s?0.0512s?1.1264s ÈÝÐí¼ÆËãÐÅºÅÆµÂÊΪN/T=911.3Hz

2.Éèx(n)Êdz¤¶ÈΪ2NµÄÓÐÏÞ³¤ÊµÐòÁУ¬X(k)Ϊx(n)µÄ2NµãµÃDFT¡£

1

£¨1£©ÊÔÉè¼ÆÓÃÒ»´ÎNµãFFTÍê³É¼ÆËãX(k)µÄ¸ßЧËã·¨£»

£¨2£©ÈôÒÑÖªX(k)£¬ÊÔÉè¼ÆÓÃÒ»´ÎNµãIFFTʵÏÖx(n)µÄ2NµãIDFTÔËËã¡£

½â£º±¾ÌâµÄ½âÌâ˼·¾ÍÊÇDIT-FFT˼Ïë¡£ £¨1£© ·ÖÎö2NµãµÄFFT£¬ÈçÏÂ

ÔÚʼÓÚ·Ö±ð³éȡżÊýµãºÍÆæÊýµãx(n)µÃµ½Á½¸öN³¤µÄʵÐòÁÐx1(n)ºÍx2(n);

X1(n) = x(2n), n = 0,1,¡­, N-1 X2(n) = x(2n+1), n = 0,1,¡­, N-1

¸ù¾ÝDIT-FFTµÄ˼Ï룬ֻҪÇòµÄx1(n)ºÍx2(n)µÄNµçDFT£¬ÔÙ¾­¹ý¼òµ¥µÄÒ»¼¶µûÐÎÔËËã¾Í¿ÉµÃµ½x(n)µÄ2NµãµÄDFT¡£ÒòΪx1(n)ºÍx2(n)¾ùΪʵÐòÁУ¬ËùÒÔ¸ù¾ÝDFTµÄ¹²éî¶Ô³ÆÐÔ£¬¿ÉÒÔÓÃÒ»´ÎNµãFFTÇóµÃX1(k)ºÍX2(k)¡£¾ßÌå·½·¨ÈçÏ£º

Áî y(n) = x1(n) + jx2(n)

Y(k) = DFT[y(n)], k = 0,1,¡­, N-1

Ôò X1(k) = DFT[x1(n)] = Yep(k) = 0.5[Y(k)+Y*(N-k)] X2(k) = DFT[jx2(n)] = Yop(k) = 0.5[Y(k)-Y*(N-k)] 2NµãµÃDFT[x(n)] = X(k)¿ÉÓÉX1(k)ºÍX2(k)µÃµ½

k??X(k)?X1(k)?W2NX2(k),k?0,1,?,N?1 ?k??X(k)?X1(k)?W2NX2(k),k?N,N?1,?,2N?1ÕâÑù£¬Í¨¹ýÒ»´ÎNµãFFT¼ÆËã¾ÍÍê³ÉÁ˼ÆËã2NµãDFT¡£µ±È»ÓÉY(k)

Çóx1(k)ºÍX2(k)ÐèÒªÏà¶ÔСµÄ¶îÍâ¼ÆËãÁ¿¡£ £¨2£© ·ÖÎö2NµãµÄIFFT±ä»»£¬ÈçÏÂ

Óë(1)Ïàͬ£¬ÉèX1(n),x2(n),X1(k),X2(k); n,k = 0,1,¡­, N-1 ÔòÓ¦Âú×ã¹ØÏµÊ½

k??X(k)?X1(k)?W2NX2(k),k?0,1,?,N?1 ?k??X(k?N)?X1(k)?W2NX2(k)ÓÉÉÏʽ¿É½â³ö

X1(k)?0.5[X(k)?X(k?N)]X2(k)?0.5[X(k)?X(k?N)]W?k2N

ÓÉÒÔÉÏ·ÖÎö¿ÉµÃ³ö¼ÆËã¹ý³ÌÈçÏÂ:

1ÓÉX(k)¼ÆËã³öX1(k)ºÍX2(k),¼´ ¡ð

X1(k)?0.5[X(k)?X(k?N)]X2(k)?0.5[X(k)?X(k?N)]W?k2N

2ÓÉX1(k)ºÍX2(k)¹¹³ÉNµãƵÓòÐòÁÐY(k) ¡ð

Y(k) = X1(k) +jX2(k) = Yep(k) + Yop(k)

ÆäÖÐYep(k) = X1(k)£¬Yop(k) = jX2(k),½øÐÐNµãIFFTµÃµ½

y(n)?IFFT[Y(k)]?Re[y(n)]?jIm[y(n)],n?0,1,?,N?1

2

ÓÉDFTµÄ¹²éî¶Ô³ÆÐÔÖª

Re[y(n)]?0.5[y(n)?y*(n)]?IDFT[Yep(k)]?x1(n)Im[y(n)]?0.5[y(n)?y*(n)]?IDFT[Yop(k)]?jx2(n)3ÓÉx1(n)ºÍx2(n)ºÏ³Éx(n) ¡ð

?nx1(),n?ż??2x(n)??

n?1?x2(),n?Ææ??2

3.Çë¸ø³ö16µãʱÓò³éÑ¡ÊäÈëµ¹Ðò¡¢Êä³ö˳Ðò»ù2-FFTÍêÕû¼ÆËãÁ÷ͼ£¬×¢ÒâWNP¼°ÆäpÖµµÃÈ·¶¨¡£

½â£º

3

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4