气增加等同于给家兔缺氧,刺激外周化学感受器,引起延髓呼吸中枢兴奋,反射性引起呼吸运动增强 [2] 。
5.3吸入高浓度CO2后家兔呼吸张力从 cmH2O 增加到 cmH2O ,呼吸频率从 次/min增加到 次/min,与正常呼吸相比呼吸张力增加 ml/min,呼吸频率增加 次/min,通气量明显增加,呼吸频率加快是由吸入气中PCO2增加引起血液中pCO2增高,CO2通过血脑屏障进入脑脊液中溶于水,在碳酸酐酶的作用下分解成HCO3-+H+, H+刺激延髓化学感受器,间接作用于呼吸中枢,通过呼吸肌的作用使呼吸运动加强。 CO2分压增高还刺激主动脉体和颈动脉体外周化学感受器,反射性地使呼吸加深加快[2] ;结果发现吸入CO2后引起通气量增加比吸入纯氮气更明显,这可能与缺氧主要是刺激外周化学感受器,对中枢化学感受器具有抑制作用;PaCO2-对中枢化学感受器和化学感受器外周均有刺激作用,而且, PaCO2-和H+-作用总和等因素有关[2] 。
5.4注射乳酸使动脉血中H+浓度的增加,可使呼吸加深、加快,肺通气增加。
H+对呼吸的调节既可通过刺激外周化学感受器也可刺激中枢化学感受器而实现。但H+不易通过血-脑屏障,因而此时H+的效应主要是刺激外周化学感受器。
5.5切断两侧迷走神经后,可使吸气延长,呼吸深慢。因为气管和细支气管的平滑肌中有牵张感受器,迷走神经中有肺牵张反射的传入纤维。肺牵张反射中的肺扩张反射的生理作用,在于阻止吸气过长过深,加速吸气和呼气运动的交替,使呼吸频率增加。切断了迷走神经后,中断了肺牵张反射的传入通路,肺牵张反射的生理作用被消除,呼吸运动深慢,根据上述机制,用电刺激迷走神经的中枢端则可以使深慢的呼吸重新变为浅快,并且可以接近正常的呼吸频率和深度。
5.6 度冷丁主要通过抑制呼吸中枢,降低中枢对CO2的敏感性,而影响呼吸运动。尼可刹米具有直接兴奋延髓呼吸中枢与刺激颈总动脉化学感受器的作用,由度冷丁引起的呼吸抑制能被`尼可刹米对抗,另外度冷丁会降低呼吸中枢对CO2的敏感性而尼可刹米能增加呼吸中枢对CO2的敏感性的影响作用也与度冷丁相反。
1、血液中CO2增多或缺O2时,呼吸运动有何变化,通过那些途径?
CO2增多和缺O2都能使呼吸增强。CO2刺激呼吸是通过刺激中枢化学感受器和外周化学感受器两条途径实现的。中枢化学感受器起主要作用。但因为中枢化学感受反应较慢,当动脉血中CO2分压突然增高时,外周化学感受器在引起快速呼吸反应中可起重要作用。 低O2对呼吸运动的刺激完全是通过外周化学感受器实现的。缺O2可以刺激颈动脉体和主动脉体的外周化学感受器,而使延髓呼吸中枢兴奋,反射性地引起呼吸运动增强。
2.根据实验结果分析肺牵张反射,包括迷走神经气抑制反射与迷走神经吸气兴奋反射的反射途径以及对维持正常呼吸节律的意义。
肺充气或扩张时:感觉器位于从气管到细支气管的平滑肌中,是牵张感受器,阈值低,适应慢。当肺扩张牵拉呼吸道,使之也扩张时,感觉器兴奋,冲动经迷走神经走神经粗纤维传入延髓。在延髓内通过一定的神经联系使吸气切断机制兴奋,切断吸气,转入呼气。这样便加速了吸气和呼气的交替,使呼吸频率增加。所以切断迷走神经后,吸气延长、加深,呼吸变得深而慢。
肺缩小时:感受器同样位于气道平滑肌内,但其性质尚不十分清楚。肺缩小反向在较强的缩肺时才出现,它在平静呼吸调节中意义不大,但对阻止呼气过深和肺不张等可能起一定作用。
3.双侧切断迷走神经后,呼吸运动的变化说明什么问题?
迷走神经中含有肺牵张反射的传人纤维。肺牵张反射中的肺扩张反射(亦称吸气抑制反射)的生理作用,在于阻止吸气过长过深,促使吸气及时转人呼气,从而加速了吸气和呼气动作的交替,调节呼吸的频率和深度。当切断两侧颈迷走神经后,中断了肺牵张反射的传人通路,肺牵张反射的生理作用被消除,因此呈现出慢而深的呼吸运动,使吸气延长。
实验感想及讨论:
1、实验中分离气管,血管时要注意钝性分离,否则容易破坏静脉导致出血严重,影响神经的分离。
2、气管插管时若不慎使出血流入气管,可在镊子上缠棉花伸入气管将血液擦拭干净。