遗传算法
遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。
比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解:
下续(表格)
下续??
初始群体 判别值 8 7 4 10 第一次迭代 判别值 8 10 12 9 第二次迭代 判特征组合 别值 1,3,5,7,9 1,2,3,7,8 1,3,5,7,8 1,2,3,7,9 13 10 10 12 特征组合 特征组合 1,2,3,4,9 2,3,6,8,9 6,7,8,9,10 1,3,5,7,8 1,2,3,4,9 1,3,5,7,8 1,2,3,7,9 1,3,4,5,8 即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。
遗传算法的具体的步骤如下:
1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。
2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。
3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率(Pc)挑选的每两个父代通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。
4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。