第一章绪论
1.1 流量计的发展概述
自古以来测量都是人类文明的一种标志,是计量科学技术的组成部分之一,它广泛存在于水利,化工,农业,石油,冶金以及人民生活各个领域之中,一直得到世界各国政府和企业的重视,而且重视程度一直在不断加强。早在公元前1000年埃及人就开始利用堰法测量尼罗河的流量来预报年成的好坏,古罗马人则在修渠饮水中采用孔板测量流量。1738年,瑞士人丹尼尔·伯努利以伯努利方程为依据,利用差压法测量水流量;后来意大利人文丘里研究用文丘里管测量流量,并于1791年发表了研究成果;1886年,美国人赫谢尔用文丘里管制成测量水流量的使用装置;1911~1912年,美籍匈牙利人卡门提出卡门涡街的新理论;30年代,又出现了探讨用声波测量液体和气体的流速的方法,但到第二次世界大战为止未获很大进展。
第二次世界大战后,随着国际经济和科学技术的迅速发展,流量计量日益受 到重视,流量仪表随之迅速发展起来,测量仪表开始向精密化、小型化等方向发展。
目前国外投入使用的流量计有100多种,国内定型投产的也有近50种。随着工业生产的自动化,管道化的发展,流量仪表在整个仪表生产中所占比重越来越大。据国内外资料表明,在不同的工业部门中所使用的流量仪表占整个仪表总数的15-30%。
但是,由于流量测量技术的复杂化,以及科学技术的迅速发展向流量计量提 出更新更高的要求,流量计量的现况远不能满足生产的需要,还有大量的流量计 量技术问题有待进一步研究解决。目前主要存在如下问题:流量仪表的品种、规 格、准确度和可靠性尚不能满足生产要求,特别对腐蚀性流体、脏污流体、高粘 性流体、多相流体、特大流量、微小流量等,有待发展有效的测量手段。 我国开展近代流量测量的技术比较晚,早期所需的流量仪表均从国外进口,直到20世纪30年代中期才出现光华精密机械厂所制造的家用水表,五十年代初有了新城仪表厂所开发的文丘里管差压流量计,60年代涡轮、电磁流量计的生产。至今,我国已经形成一个相当规模从事流量测量技术与仪表研发和生产的企业,从事流量仪表研究和生产的单位超过230家。目前我国的流量装置方面。与国际水平仍存在较大差距,现有产品的品种、规格、精确度和可靠性尚不能满足国内市场的需求,一些新型的流量计,如涡街流量计、旋进漩涡流量计、射流 流量计等的技术水平与国际先进水平有较大的差距,需要有较充足的经费支持并通过艰苦的努力,才有可能达到国际先进水平。
1.2 超声波流量计的概述
1.2.1 超声波流量计的发展和现状
超声波流量计(简称 USF)是利用超声波在流体中的传播特性来测量流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。
1931年,O.Rutten 发表的德国专利是关于利用声波测量管道流体流量最早的参考文献。但是要使超声波流量计具有一定的精度,要求对时间的测量精度至少达到107秒,这在当时是很难达到的;50年代初,美国科研人员首次提出了“鸣环”法,就是通过多次循环将时差扩大在进行测量,这种方法弥补了当时电子技术的不足,使得时间测量精度得以大大提高。1955年,应用声循环法MAXSON 流量计在美国研制成功,并用于航空燃料油流量的测量,标志着超声波流量计已经由理论研究阶段进入工业应用阶段,但由于电子线路太复杂而未得到推广。60年代末又出现了多普勒效应的超声波流量计。
进入20世纪的70年代以后,由于集成电路技术的飞速发展,使得高精度的时间测量成为可能,再加上高性能、工作稳定的锁相技术(PLL)的出现和应用,为超声波流量计的可靠性提供了基本的保证,同时为了消除声速变化对测量精度的影响,出现了频差法超声波流量计,这种流量计声速受温度变化的影响远小于时差法,灵敏度和测量范围也优于时差法,因而这种方法成为测量大管径大流量超声流量计的主要方案,但是仍无法保障小管径小流量测量时的精度。同一时期,前苏联科技工作者对管道内流体的流速分布规律作了大量深入研究,指出管道内流体流动存在两种状态:层流和紊流,并给出了层流状态下的理论计算公式,为超声波流量计进一步提高测量精度打下了坚实的理论基础。至此,超声波流量计的研究和应用才蓬勃发展起来,超声流量计的种类也越来越多,相继出现了波束偏移法、相关法和噪声法。
当今全世界50多家较大的超声波流量计生产商都集中于欧美日等国家,这些国家己经在超声波流量计的研制、生产和推广方面积累了丰富的经验,再加上它们本身所具有的在电子技术和工业制造领域的优势,使得它们在国际超声波流量计市场上占据了绝大部分的份额,并且主导着超声流量测量技术发展的方向和趋势。
我国超声波流量计的研究起步较晚,目前我国超声波流量计的研究和生产仍比较落后的,尽管近年来随着国外各大超声波流量计生产公司的产品纷纷进入我国的市场,也带动了国内超声流量测量研究的发展,但是从总体上说,我们现有的技术还和国际先进水平有较大差距,在国内市场中,高精度的超声波流量计还是国外品牌的天下,形成了低档产品过剩、高档产品依赖进口的局面。
1.2.2 超声波流量计的特点
超声波流量计是一种非接触式流量测量仪表,相对于传统流量计而言,它主要具有一下特点:
① 可作非接触测量。夹装式超声波流量计无需停流截管安装,只要在管道外部安装换能器即可,为无流动阻挠测量,无额外压力损失,这是超声波流量计在工业用流量仪表中具有的独特优点。
② 适用于大型圆形管道和矩形管道,原理上不受管径限制,通用性好,同一仪表可以测量不同管径的管道流量,使用时不必严格考虑管材和壁厚,且其造价基本上与管径无关,更适合于大管径、大流量的场合。
③ 对介质几乎无要求。只要能传播声波的流体皆可用超声波流量计测量流量,
因而适用于多种流体,除了水、石油等常见流体外,尤其适用于其他方法不便测量的情况,例如高温高压、腐蚀性液体、高粘度液体或气体等;而它可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。
1.3 本课题内容
超声波流量计是一种很有发展前途和应用前景的节能型流量计。然而超声波流量计本身而存在许多不足之处,传统时差法测流受声速影响精度不高,不适合小管径、小流量场合等。现有国有的大多数超声波流量计虽然价格比外国的便宜,但总体性能较差;而国外的超声波流量计尽管在精度、性能和操作使用方面都由于国内的产品,但因价格昂贵,也不可能在工业界大量使用。因此有必要在现有的基础上对超声波流量测量技术进行改进和提高,使超声波流量计性能更加稳定,总体性能接近或者达到国际先进水平,以便在国内推广和使用。基于难度和可实现性,本文采用时差法为研究课题,在综合吸收国内外先进的超声波流量测量技术的基础上,完成了一下一些主要的工作: ① ② 正; ③
设计系统的控制测量电路,包括超声波发射电路、超声波接收电路、信号
整形电路及系统控制电路等,并根据仪器本身的实际情况和现场环境研究硬件抗干扰技术;
超声波时差法测流量原理研究,针对超声波流量计测量精度容易受温度影超声波在流体中传播特性的分析、超声波流量计流体力学分析及流量修
响的问题,利用改进型算法避免温度对测量精度的影响。