湖北省武汉市2019-2020学年高三一模考试
数学(文科)试卷
一、选择题(本题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的
1.已知集合A={1,2,4},集合A.4
B.5
C.6
D.7
,则|z|=( ) D.
,则集合B中元素的个数为( )
2.设复数z满足A.5
B.
C.2
3.“¬p为真”是“p∨q为假”的( )条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要
4.某年级有1000名学生,随机编号为0001,0002,…,1000,现用系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是( ) A.0116 B.0927 C.0834 D.0726
5.若中心在原点,焦点在y轴上的双曲线离心率为A.y=±x
B.
C.
D.
,则此双曲线的渐近线方程为( )
6.已知a>b>0,c<0,下列不等关系中正确的是( ) A.ac>bc B.ac>bc C.loga(a﹣c)>logb(b﹣c)
D.
>
7.执行如图所示的程序框图,输出的x值为( )
A.0 B.3 C.6 D.8
8.函数y=sinx﹣的图象大致是(A. C.9.已知P1:?(x,y)∈D,x+y≥0; P2:?(x,y)∈D,2x﹣y+1≤0;
其中真命题的是( )
B.
D.,给出下列四个命题:; ;
)
A.P1,P2 B.P2,P3 C.P3,P4 D.P2,P4
10.某几何体的三视图如图,则该几何体的体积是( )
A.4 B. C. D.2
的图象向左平移
个单位,再向上平移1个单
11.将函数
位,得到g(x)的图象.若g(x1)g(x2)=9,且x1,x2∈,则2x1﹣x2的最大值为( ) A.
B.
C.
D.
12.已知函数其中m<﹣1,对于任意x1∈R且x1≠0,
均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是( ) A.(0,1) B.(﹣1,0)
二、填空题(本题共4小题,每小题5分,共20分) 13.设向量则m= .
14.设等比数列{an}的前n项和为Sn,若27a3﹣a6=0,则
= .
,且
的夹角为
,
C.(﹣2,﹣1)∪(﹣1,0) D.(﹣2,﹣1)
15.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字至少有一个是偶数的概率为 .(结果用数值表示)
16.设直线3x+4y﹣5=0与圆C1:x2+y2=9交于A,B两点,若圆C2的圆心在线段AB上,且圆C2与圆C1相切,切点在圆C1的劣弧AB上,则圆C2半径的最大值是 .
三、解答题:包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生任选一题作答.解答应写出文字说明,证明过程或演算步骤. 17.如图,在△ABC 中,点D在边 AB上,且∠BCD=β. (Ⅰ)求证:(Ⅱ)若α=
=,β=
,AB=
,求BC 的长.
=
.记∠ACD=α,
18.某气象站观测点记录的连续4天里,AQI指数M与当天的空气水平可见度y(单位cm)的情况如下表1: M y
900 0.5
700 3.5
300 6.5
100 9.5
哈尔滨市某月AQI指数频数分布如下表2:
M
(200,400]
频数 (1)设x=
3
6
(400,600] 12
(600,800] 6
(800,1000] 3
,根据表1的数据,求出y关于x的回归方程;
(参考公式:;其中,)
(2)小张开了一家洗车店,经统计,当M不高于200时,洗车店平均每天亏损约2000元;当M在200至400时,洗车店平均每天收入约4000元;当M大于400时,洗车店平均每天收入约7000元;根据表2估计小张的洗车店该月份平均每天的收入.
19.在四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=3,
,∠ABC=45°,P点在底面
ABCD内的射影E在线段AB上,且PE=2,BE=2EA,F为AD的中点,M在线段CD上,且CM=λCD. (1)当(2)当
时,证明:平面PFM⊥平面PAB;
时,求平面PAM与平面ABCD所成的二面角的正弦值及四棱锥P﹣ABCM的体积.
20.已知直线过椭圆C:
的右焦点F2,且椭圆C的中心关于直线l的对称点在直线圆左焦点F1交椭圆C于M、N两点. (1)求椭圆C的方程; (2)设的最大值.
21.(Ⅰ)证明:当x>1时,2lnx<x﹣(Ⅱ)若不等式围; (Ⅲ)求证:
. ;
(其中2c为焦距)上,直线m过椭
(O为坐标原点),当直线m绕点F1转动时,求λ
对任意的正实数t恒成立,求正实数a的取值范
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请在答题卡上把所选题目对应题号后的方框涂黑.
22.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ,
直线l的参数方程为(t为参数),直线l和圆C交于A、B两点.
(1)求圆心的极坐标;
(2)直线l与x轴的交点为P,求|PA|+|PB|. 23.已知函数f(x)=|3x+2|. (1)解不等式f(x)<6﹣|x﹣2|;