生物统计学课后习题答案(杜荣骞第三版)

2.10 一实验动物养殖中心,将每30只动物装在一个笼子中,已知其中有6只动物体重不合格。购买者从每一笼子中随机抽出2只称重,若都合格则接受这批动物,否则拒绝。问:

(1)检查第一只时就不合格的概率? (2)第一只合格,第二只不合格的概率? (3)接受这批动物的概率?

答:(1)设A为第一只不合格的事件,则(2)设B为第二只不合格的事件,则

P?A??630

PBA???629

?24??23?P?A?PBA??????30??29? (3)接受这批动物的概率

??

2.11 一名精神科医生听取6名研究对象对近期所做梦的叙述,得知其中有3名为忧郁症患者,3名是健康者,现从6名研究对象中选出3名,问:

(1)一共有多少种配合? (2)每一种配合的概率?

(3)选出3名忧郁症患者的概率? (4)至少选出两名忧郁症患者的概率? 答:(1)

3C6?6!?203!3!

1(2)20

3211???(3)65420

130C32C3?C3C31?32 C6(4)

2.12 图2-6为包含两个平行亚系统的一个组合系统。每一个亚系统有两个连续控制单元,只要有一个亚系统可正常工作,则整个系统即可正常运行。每一单元失灵的概率为0.1,且各单元之间都是独立的。问:

(1)全系统可正常运行的概率?

(2)只有一个亚系统失灵的概率? 图 2-6

(3)系统不能正常运转的概率?

答:(1)P(全系统可正常运行)= 0.94 + 0.93 × 0.1 × 4 + 0.92 × 0.12 × 2 = 0.963 9 (2)P(只有一个亚系统失灵) = 0.92 × 0.12 ×2 + 0.93 × 0.1 × 4 = 0.307 8 (3)P(系统不能正常运转) = 0.14 + 0.13 × 0.9 × 4 + 0.12 × 0.92 × 4 = 0.036 1 或 = 1 – 0.963 9 = 0.036 1

2.13 做医学研究需购买大鼠,根据研究的不同需要,可能购买A,B,C,D四个品系中的任何品系。实验室需预算下一年度在购买大鼠上的开支,下表给出每一品系50只大鼠的售价及其被利用的概率:

品系

每50只的售价 /元

500.00 750.00 875.00 100.00

被利用的概率

0.1 0.4 0.3 0.2

A B C D 问:(1)设Y为每50只大鼠的售价,期望售价是多少? (2)方差是多少?

答:(1)

E?Y???p?y?y?500?x1432?750??875??100??632.510101010

222????????EY?EY(2)

1432????5002??7502??8752??1002???632.5210101010?? ?81631.25

2.14 Y为垂钓者在一小时内钓上的鱼数,其概率分布如下表:

y 0 1 2 3 4 5 6

p(y) 0.001 0.010 0.060 0.185 0.324 0.302 0.118

问:(1)期望一小时内钓到的鱼数? (2)它们的方差?

答:E?Y??0 × 0.001 + 1 × 0.010 + 2 × 0.060 + 3 × 0.185 + 4 × 0.324 + 5 × 0.302 + 6

× 0.118= 4.2

σ2 = 02 ×0.001 + 12 ×0.010 + 22 ×0.060 + 32 ×0.185 + 42 ×0.324 + 52 ×0.302 + 62 ×0.118 – 4.22 = 1.257

2.15 一农场主租用一块河滩地,若无洪水,年终可望获利20 000元。若出现洪灾,他将赔掉12 000元(租地费、种子、肥料、人工费等)。根据常年经验,出现洪灾的概率为0.4。问:(1)农场主期望赢利?

(2)保险公司应允若投保1 000元,将补偿因洪灾所造成的损失,农场主是否买这一保险? (3)你认为保险公司收取的保险金是太多还是太少?

答:(1)未投保的期望赢利:E(X)= 20 000 × 0.6 + (12 000) × 0.4 = 7 200(元)

(2)投保后的期望赢利:E(X)= (20 000 – 1 000) × 0.6 + (?1 000) × 0.4 = 11 000(元)。 当然要买这一保险。

(3)保险公司期望获利:E(X)= 1000 × 0.6 + (?12000 + 1000) × 0.4 = ?3800(元) 收取保险金太少。

第三章 几种常见的概率分布律

3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?

答:代入二项分布概率函数,这里φ=1/2。 8!?1??1?56?1?p?3???0.21875?????56???3!5!?2??2??2?256

结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为

5380.218 75。

3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)

?31?????44?55?3??3??1??3??1??3??1??3??1??1?????5?????10?????10?????5????????4??4??4??4??4??4??4??4??4? ?4?4322345表型共有1+5+10+10+5+1 = 32种。

(2)

243?3?P?5显??????0.237341024???3??1?5?81P?4显1隐??5??????0.3955441024?????3?P?3显2隐??10???4?345?1?10?27?0.2637???41024??32?3??1?10?9P?2显3隐??10??????0.08789441024????5?3?3??1?P?1显4隐??5??????0.01465441024????1?1?P?5隐??????0.000976641024??

542

它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。

3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为Pa,问为了至少得到一株有利突变的单株,群体n应多大?

答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:

?1???n?1?Panlg?1????lg?1?Pa?lg?1?Pa?n?lg?1???

3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。今用一种新

药治疗染上该病的5名患者,这5人均治愈了,问该项新药是否显著地优于一般疗法?(提示:计算一般疗法5人均治愈的概率,习惯上当P(5人均治愈)> 0.05时,则认为差异不显著;当P(5人均治愈)< 0.05时,则认为差异显著)。

答:设P(治愈)=φ= 0.60,则5人均治愈的概率为: P = p5 = (0.60)5 = 0.077 76 P>0.05

所以该药物并不优于一般疗法。

3.5 给一组雌雄等量的实验动物服用一种药物,然后对存活的动物分成5只为一组,进行抽样试验。试验结果表明,5只均为雄性的频率为1 / 243,问该药物对雌雄的致死作用是否一致?

答:设p为处理后雄性动物存活的概率,则

111?5p?24333

因此,对雄性动物的致死率高于对雌性动物的致死率。

p5?

3.6 把成年椿象放在?8.5℃下冷冻15分钟,然后在100个各含10只椿象的样本中计算死虫数,得到以下结果:

死虫数 样本数

0 4

1 21

2 28

3 22

4 14

5 8

6 2

7 1

8 0

9 0

10 合计 0

100

计算理论频数,并与实际频数做一比较。

答:先计算死虫数C:

C = 0×4+1×21+2×28+3×22+4×14+5×8+6×2+7×1 = 258 死虫率 φ= 258 / 1 000 = 0.258 活虫率 1 –φ= 0.742

展开二项式(0.742 + 0.258)10 得到以下结果:

0.050 59+0.175 90+0.275 22+0.255 19+0.155 28+0.064 79+0.018 774 +3.730 2×10-3+4.863 8×10-4+3.758 2×10-5+1.307×10-6 将以上各频率乘以100得到理论频数,并将实际数与理论数列成下表。

死虫数 0 1 2 3 4 5 6 7 8 9 10

3.7 人类染色体一半来自父亲,一半来自母亲。在减数分裂时,46条染色体随机分配到两极,若不考虑染色体内重组,父亲的22条常染色体重新聚集在一极的概率是多少?12条父亲染色体和11条母亲染色体被分配到同一极的概率又是多少?常染色体的组合共有多少种?从上述的计算可以看出变异的广泛性,若再考虑染色体内重组,新组合染色体的数目就更惊人了。

实际数 4 21 28 22 14 8 2 1 0 0 0 理论数 5.1 17.2 27.5 25.5 15.5 6.5 1.9 0.4 0 0 0 偏差 -1.1 3.8 0.5 -3.5 -1.5 1.5 0.1 0.6 0 0 0

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4