习题五
5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同?
解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为y?f(t);波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x,又是时间t的函数,即y?f(x,t). (2)在谐振动方程y?f(t)中只有一个独立的变量时间t,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程y?f(x,t)中有两个独立变量,即坐标位置x和时间t,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律.
xy?Acos?(t?)u中的坐标位置给定后,即可得到该点的振动方程,而波源持当谐波方程
续不断地振动又是产生波动的必要条件之一.
(3)振动曲线y?f(t)描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y,横轴为t;波动曲线y?f(x,t)描述的是介质中所有质元的位移随位置,随时间变化的规律,
其纵轴为y,横轴为x.每一幅图只能给出某一时刻质元的位移随坐标位置x变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图.
xxu)+?0]中的u表示什么?如果改写为y=Acos 5-2 波动方程y=Acos[?(
?x?xx?t???0t?uu)+?0]的值(),u又是什么意思?如果t和x均增加,但相应的[?(
t?不变,由此能从波动方程说明什么?
?x解: 波动方程中的x/u表示了介质中坐标位置为x的质元的振动落后于原点的时间;u则表示x处质元比原点落后的振动位相;设t时刻的波动方程为
?xyt?Acos(?t???0)u
则t??t时刻的波动方程为
?(x??x)yt??t?Acos[?(t??t)???0]u
?x(?t?)u中,其表示在时刻t,位置x处的振动状态,经过?t后传播到x?u?t处.所以在
?x(?t?)u的值不会变化,而这正好说明了经过时间?t,波形即向前传当t,x均增加时,
?xy?Acos(?t???0)u播了?x?u?t的距离,说明描述的是一列行进中的波,故谓之行
波方程.
5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点?
解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形
变势能.形变势能由介质的相对形变量(即应变量)决定.如果取波动方程为y?f(x,t),则相对形变量(即应变量)为?y/?x.波动势能则是与?y/?x的平方成正比.由波动曲线图(题5-3图)可知,在波峰,波谷处,波动动能有极小(此处振动速度为零),而在该处的应变也为极小(该处?y/?x?0),所以在波峰,波谷处波动势能也为极小;在平衡位置处波动动能为极大(该处振动速度的极大),而在该处的应变也是最大(该处是曲线的拐点),当然波动势能也为最大.这就说明了在介质中波动动能与波动势能是同步变化的,即具有相同的量值.
题5-3图
对于一个孤立的谐振动系统,是一个孤立的保守系统,机械能守恒,即振子的动能与势能之和保持为一个常数,而动能与势能在不断地转换,所以动能和势能不可能同步变化. 5-4 波动方程中,坐标轴原点是否一定要选在波源处? t=0时刻是否一定是波源开始振动的时刻? 波动方程写成y=Acos?(方程才能写成这种形式?
解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为,所以在波动方程中,坐标原点不一定要选在波源处,同样,t?0的时刻也不一定是波源开始振动的时刻;当波动方程
t?xu)时,波源一定在坐标原点处吗?在什么前提下波动
xy?Acos?(t?)u时,坐标原点也不一定是选在波源所在处的.因为在此处对于波源写成
的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只
要把振动方程为已知的点选为坐标原点,即可得题示的波动方程.
5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理量相同?
y?2Acos2?2?解: 取驻波方程为,则可知,在相邻两波节中的同一半波长上,描述各质点的振幅是不相同的,各质点的振幅是随位置按余弦规律变化的,即振幅变化规律
?xcos??vt2Acos可表示为.而在这同一半波长上,各质点的振动位相则是相同的,即以相邻两波节的介质为一段,同一段介质内各质点都有相同的振动位相,而相邻两段介质内的质点振动位相则相反.
5-6 波源向着观察者运动和观察者向波源运动都会产生频率增高的多普勒效应,这两种情况有何区别?
解: 波源向着观察者运动时,波面将被挤压,波在介质中的波长,将被压缩变短,(如题5-6图所示),因而观察者在单位时间内接收到的完整数目(u/??)会增多,所以接收频率增高;
?x?而观察者向着波源运动时,波面形状不变,但观察者测到的波速增大,即u?u?vB,因
u?而单位时间内通过观察者完整波的数目?也会增多,即接收频率也将增高.简单地说,前
者是通过压缩波面(缩短波长)使频率增高,后者则是观察者的运动使得单位时间内通过的波面数增加而升高频率.
题5-6 图多普勒效应
5-7 一平面简谐波沿x轴负向传播,波长?=1.0 m,原点处质点的振动频率为?=2. 0 Hz,振幅A=0.1m,且在t=0时恰好通过平衡位置向y轴负向运动,求此平面波的波动方程.
?y?0,v0?0,故知原点的振动初相为2,取
解: 由题知t?0时原点处质点的振动状态为0txy?Acos[2?(?)??0]T?波动方程为则有
x?y?0.1cos[2?(2t?)?]12
??0.1cos(4?t?2?x?)2m
5-8 已知波源在原点的一列平面简谐波,波动方程为y=Acos(Bt?Cx),其中A,B,C为正值恒量.求:
(1)波的振幅、波速、频率、周期与波长;
(2)写出传播方向上距离波源为l处一点的振动方程; (3)任一时刻,在波的传播方向上相距为d的两点的位相差. 解: (1)已知平面简谐波的波动方程
y?Acos(Bt?Cx)(x?0)
将上式与波动方程的标准形式
y?Acos(2??t?2?比较,可知: 波振幅为A,频率
x?
)??B2?,