新人教版小学数学总复习知识点汇总 第一部分 数和数的运算 (一)整 数
1.自然数、负数和整数
(1)、自然数 :我们在数物体的时候,用来表示物体个数的0,1,2,3……叫做自然数。一个物体也没有,用0表示。0是最小的自然数。1是自然数的基本单位,任何一个自然数都是由若干个1组成。 0是最小的自然数,没有最大的自然数。
(2)、负数:负数和正数是表示相反意义的量
正整数(1、2、3、4、……) 自然数
(3)整 数 零 (0既不是正数,也不是负数)
负整数(-1、-2、-3、-4……)
2、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 3、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 4、数的整除 :整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们
就说a能被b整除,或者说b能整除a 。
(1)如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 如:因为35能被7整除,所以35是7的倍数,7是35的约数。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的 因数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 (3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
如:3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 (4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。
(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,
例如:12、108、204都能被3整除。
(7)一个数各位数上的和能被9整除,这个数就能被9整除。
(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
(9)能被2整除的数叫做偶数。最小的偶数是0.
不能被2整除的数叫做奇数。最小的奇数是1
(10)一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。最小的质数是2
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97。
(11)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。最小的合数是4
例如 4、6、8、9、12都是合数。
(12)1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自
然数按其约数的个数的不同分类,可分为质数、合数和1。
(15)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的
因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 (16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:把28=2X 2 X7
(17)几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最
大公约数。例如:12的因数有1、2、3、4、6、12; 18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
(18)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
①1和任何自然数互质。 ②相邻的两个自然数互质。 ③两个不同的质数互质。
④当合数不是质数的倍数时,这个合数和这个质数互质。
⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 ⑦如果两个数是互质数,它们的最大公约数就是1。
(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数
的最小公倍数,如:2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 ……
其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。
①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 ②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 ③几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。 (二)小数
1 、小数的意义
(1)把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之
几、千分之几…… 可以用小数表示。
(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
(3)一个小数由整数部分、小数部分和小数点组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
(4)在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
1
2、小数的分类
(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
(2)带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
(3)有限小数: 小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 、 25.3 、 0.23 都是有限小数。
(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 …… 3.1415926 ……
(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样
的小数叫做无限不循环小数。 例如:π
(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出
现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……
(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 ……
(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
例如: 3.1222 …… 0.03333 ……
(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在
这个循环节的首、末位数字上各点一个圆点。如果循环节只有 一个数字,就只在它的上面点一个点。
例如: 3.777 …… 简写作:3. ; 0.5302302 …… 简写作:0.50 。 (三)分数 1、分数的意义
(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 (2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把
单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3、约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。
2