5¡¢ ÇóÖ±ÏßL:x?1?y?
ËÄ¡¢Ó¦ÓÃÌâ
1¡¢ÒÑÖªµãA(1,0,0)¼°µãB(0,2,1)£¬ÊÔÔÚzÖáÉÏÇóÒ»µãC£¬Ê¹?ABCÃæ»ý×îС¡£
2¡¢ÒÑÖª¶¯µãM(x,y,z)µ½xoyƽÃæµÄ¾àÀëÓëµãMµ½µã(1,?1,2)µÄ¾àÀëÏàµÈ£¬ÇóµãMµÄ¹ì¼£·½³Ì
- 16 -
z?1ÔÚƽÃæ?:x?y?2z?1ÉϵÄͶӰֱÏߵķ½³Ì ?1µÚ¾ÅÕ¶àÔªº¯Êý΢·Ö·¨¼°Ó¦ÓÃ
£¨×÷ÒµÌâÒ»£©
Ò»¡¢Ìî¿ÕÌâ 1.º¯Êýz?4?x2?y2?ln(x2?y2?1)µÄ¶¨ÒåÓòÊÇ .
2£®º¯Êýz?y2?xy2?xÔÚ ´¦¼ä¶Ï¡£
3£® Éè f(x,y) ÔÚ µã (x0,y0) ´¦ µÄ Æ« µ¼ Êý ´æ ÔÚ£¬Ôò
limf(x0?x,y0)?f(x0?x,y0)x?0x£½ .
?x2?y24£®ÇúÏß??z?,ÔÚ(2,4,5)´¦¶ÔxÖáµÄÇã½ÇÊÇ ?4. ?y?45£®Éèf(x,y)?x?(y?1)arcsinxy£¬Ôòfx(x,1) . 6£®f(x,y,z)?zx2?y2,Ôòdf(1,2,1)? .
z?xsin(ax?by)£¬Ôò?27£®Éèz?x?y? .
?xx?28£®Éèu?esinuy,Ôò
?x?yx?2?
y?1?¶þ¡¢µ¥ÏîÑ¡Ôñ
£±£®¼«ÏÞlimx2yx?4?£¨ £©¡£
?00x?y2yA.²»´æÔÚ B.1 C.²»È·¶¨ D.0
2£®º¯Êýf(x,y)ÔÚµã(x0,y0)´¦µÄÆ«µ¼Êý´æÔÚÊÇf(x,y)ÔڸõãÁ¬ÐøµÄ£¨ A.³ä·Ö B.±ØÒª C.³äÒª D.¼È²»³ä·ÖÒ²²»±ØÒª
3£®lim1?(xy)2?exx?£¨ £©y??023¡£ 1x?y
- 17 -
£©Ìõ¼þ¡£ A.²»´æÔÚ B.²»È·¶¨ C.1 D.2 4£®Éèu?xyz£¬Ôò
?u?x,?u?y,?u?z·Ö±ðΪ£¨ £©
¡£ A.yzxyz?1,xyz(lnx)zyz?1,xyz(lnx)yzlny B. xyzlnyz,xyzyzlny,xyz?1z
C.xyzlnx,xyzzyz?1,xyzyzlny D. xyz?1z,zxyz?1xylnx,xyzzyz?1
5£®Éèz?siny?f(sinx?siny)£¬ÆäÖÐf(u)¿É΢£¬Ôòzx,zy·Ö±ðΪ£¨ £©¡£A.f1?cosx,cosy?f2?cosy B.f1?,cosy?f2? C.²»´æÔÚ D. f??cosx,cosy?f??cosy
6£®¶Ô¶þÔªº¯Êýz?f(x,y)£¬ÏÂÁÐÓйØÆ«µ¼ÊýÓëȫ΢·Ö¹ØϵÖÐÕýÈ·µÄÃüÌâÊÇ£¨A.ÈôÆ«µ¼Êý²»Á¬Ðø£¬Ôòȫ΢·Ö²»´æÔÚ B. Èôȫ΢·Ö´æÔÚ£¬ÔòÆ«µ¼Êý±ØÁ¬Ðø C.ÈôÆ«µ¼ÊýÁ¬Ðø£¬Ôòȫ΢·Ö±Ø´æÔÚ D.Èôȫ΢·Ö´æÔÚ£¬ÔòÆ«µ¼Êý²»Ò»¶¨´æÔÚ
?7£®É躯Êýf(x,y)??x2y2?x4?y4,(x,y)?(0,0)£¬ÔòÔÚ(0,0)µã¹ØÓÚf(x,y)
??0,(x,y)?(0,0)ÏÂÁÐÃüÌâÕýÈ·µÄÊÇ( ).
A.Á¬Ðøµ«²»¿É΢ B. Á¬ÐøÇҿɵ¼ C.¿Éµ¼µ«²»¿É΢ D. ¼È²»Á¬ÐøÓÖ²»¿Éµ¼
Èý¡¢ÇóÏÂÁм«ÏÞ 1£®lim3?xy?9x 2£®limsin(xy)
y??00xyxy??20y 3£®lim1?cos(x2?y2)xy??00(x2?y2)ex2y2 4£®5xyxlimy????2y?3
- 18 -
¡£ £©
ËÄ¡¢ÇóÏÂÁк¯ÊýµÄÆ«µ¼Êý 1£®Éèz?sin(xy)?cos2(xy),Çó?z?z,¡£ ?x?y
2£®Éèu?3xylnx?y3?sina,?u?u?x,?y.
3£®Éèf(x,y)??x2?y2xet2dt,Çó?f?x,?f?y.
4£®Éèu?arctan(x?y)z£¬Çó?u??x,u?z
- 19 -
Îå¡¢Éè
?x2y222,x?y?0,?232 f(x,y)??(x?y)2?0,x2?y2?0.?Ö¤Ã÷£ºÔÚµã(0,0)´¦Á¬ÐøÇÒÆ«µ¼Êý´æÔÚ£¬µ«²»¿É΢
- 20 -