安徽省马鞍山市2019年中考数学模拟试卷(含答案)

解得:,

∴直线A′B的解析式为y=x+当y=0时, x+解得x=﹣

,0). =0,

∴点P的坐标为(﹣故答案为:(﹣五.解答题

,0).

19.解:(Ⅰ)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠

OCG;

∵AB∥CD,

∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°;

(Ⅱ)由(Ⅰ)知,∠BOC=90°. ∵OB=6cm,OC=8cm, ∴由勾股定理得到:BC=∴OF=4.8cm. ∴BF=3.6cm,

∵CF、CG分别与⊙O相切于F、G, ∴CG=CF=6.4cm.

=10cm,

20.解:由题意可知,第一行数的规律为﹣(﹣2)n,

第二行每个数是第一行数对应列的数加2,即第二行数的规律为﹣(﹣2)n+2, 第三行每个数是第一行数对应列数除以(﹣2),即第三行数的规律为﹣(﹣2)n﹣1; (1)a=﹣(﹣2)n,b=﹣(﹣2)n+2,c=﹣(﹣2)n﹣1; (2)∵a,b,c三个数的和为770,

∴﹣(﹣2)n﹣(﹣2)n+2﹣(﹣2)n﹣1=770, 3×(﹣2)n﹣1+2=770, ∴n=9. 六.解答

21.解:(1)调查的总人数为8÷10%=80, 则n=15%×80=12, 由于共有80个数据,

∴中位数为第40、41个数据的平均数,而第40、41个数据均落在C组, ∴中位数落在C组,

扇形统计图中B组对应的圆心角为故答案为:12,C,108;

(2)如下图所示:

×360°=108°,

(3)画树状图如下:

共12种可能,抽取的两名学生都来自九年级的有2种可能, ∴P(两个学生都是九年

级)

==,

答:抽取的两名学生都来自九年级的概率为. 七.解答 22.解:如图:

(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点. ∴

解得

∴抛物线的解析式为y=﹣x2+2x+3. (2)存在.理由如下:

y=﹣x2+2x+3=﹣(x﹣1)2+4.

∵点D(2,m)在第一象限的抛物线上, ∴m=3,∴D(2,3), ∵C(0,3) ∵OC=OB,

∴∠OBC=∠OCB=45°.

连接CD,∴CD∥x轴, ∴∠DCB=∠OBC=45°, ∴∠DCB=∠OCB,

在y轴上取点G,使CG=CD=2, 再延长BG交抛物线于点P, 在△DCB和△GCB中,

CB=CB,∠DCB=∠OCB,CG=CD,

∴△DCB≌△GCB(SAS) ∴∠DBC=∠GBC.

设直线BP解析式为yBP=kx+b(k≠0),把G(0,1),B(3,0)代入,得

k=﹣,b=1,

∴BP解析式为yBP=﹣x+1.

yBP=﹣x+1,y=﹣x2+2x+3

当y=yBP 时,﹣x+1=﹣x2+2x+3, 解得x1=﹣,x2=3(舍去), ∴y=

).

∴P(﹣,

(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3). 八.解答

23.解:(1)∵四边形ABCD是正方形,

∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°, ∴AC=

=4

∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°, ∴∠AHC=∠ACG. 故答案为=.

(2)结论:AC2=AG?AH.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4