第十章 界面现象
10.1 在293.15 K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。
10.2计算373.15K时,下列情况下弯曲液面承受的附加压。已知373.15K时水的表面张力为58.91×10-3 N·m-1。
(1)水中存在的半径为0.1μm的小气泡; (2)空气中存在的半径为0.1μm的小液滴; (3)空气中存在的半径为0.1μm的小气泡。
10.3 293.15K时,将直径为0.1mm的玻璃毛细管插入乙醇中。问需要在管内加入多大的压力才能防止液面上升?如不加任何压力,平衡后毛细管内液面高度为多少?已知该温度下乙醇的表面张力为22.3×10-3 N·m-1,密度为789.4kg·m-3,重力加速度为9.8m·s-2。设乙醇能很好地润湿玻璃。
10.4 水蒸气迅速冷却至298.15K时可达过饱和状态。已知该温度下的表面张力为71.97×10-3 N·m-1,密度为997kg·m-3。当过饱和水蒸气压力为平液面水的饱和蒸汽压的4倍时,计算。
(1)开始形成水滴的半径; (2)每个水滴中所含水分子的个数。
10.5 已知CaCO(在773.15K时的密度3900kg·m-3,表面张力为1210×10-3 3s)N·m-1,分解压力为101.325Pa。若将CaCO3(s)研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K时的分解压力。
10.6 已知273.15K时,用活性炭吸附CHCl3,其饱和吸附量为93.8dm3·kg-1,若CHCl3的分压为13.375kPa,其平衡吸附量为82.5 dm3·kg-1。试求:
(1)朗缪尔吸附等温的b值;
(2)CHCl3的分压为6.6672 kPa时,平衡吸附量为若干?
10.7 在1373.15K时向某固体表面涂银。已知该温度下固体材料的表面张力γ s =9 65 mN·m-1,Ag(l)的表面张力γl = 878.5 mN·m-1,固体材料与Ag(l)的表面张力γ sl = 1364mN·m-1。计算接触角,并判断液体银能否润湿该材料表面。
10.8 293.15K时,水的表面张力为72.75mN·m-1,汞的表面张力486.5 mN·m-1,而汞和水之间的表面张力为375 mN·m-1,试判断:
(1)水能否在汞的表面上铺展开; (2)汞能否在水的表面上铺展开。
补充题
10.1 请回答下列问题:
(1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生?
(2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象?
(3)物理吸附和化学吸附最本质的区别是什么?
(4)在一定温度、压力下,为什么物理吸附都是放热过程?
10.2 在351.15K时,用焦炭吸附NH3气测得如下数据,设Va~p关系符合Va = kpn方程。 p/kPa Va/dm3·kg-1
0.7224 10.2
1.307 14.7
1.723 17.3
2.898 23.7
3.931 28.4
7.528 41.9
10.102 50.1
试求方程Va = kpn中k及n的数值。
10.3 在77.2K时,用微型硅铝酸吸附N2(g),在不同的平衡压力下,测得每千克催化剂吸附的N2(g)在标准状况下的体积数据如下:
表10.12
p/kPa Va/dm3·kg-1
8.6993 115.58
13.639 126.3
22.112 150.69
29.924 166.38
38.910 184.42
已知77.2K时N2(g)的饱和蒸气压为99.125kPa,每个N2分子截面积a=16.2×10-29m2。试用BET公式计算该催化剂的比表面积。
10.4 292.15K时,丁酸水溶液的表面张力可以表示为γ =γ0- aln(1+ bc),式中γ0为纯水的表面张力,a和b皆为一常数。
(1)试求该溶液中丁酸的表面吸附量Г和浓度c的关系;
(2)若已知a=13.1 mN·m-1,b=19.62 dm3·mol-1,试计算当c=0.20 mol·dm-3时的Г为多少;
(3)当丁酸的浓度足够大,达到bc>>1时,饱和吸附量Гm为多少?设此时表面上丁酸呈单分子层吸附,计算在液面上每个丁酸分子所占的截面积为多少?