2014-2019年高考数学真题分类汇编专题7:数列4(较难综合解答题)1

2014-2019年高考数学真题分类汇编

专题7:数列(较难综合解答题)

1.(2014?安徽理)设实数c?0,整数p?1,n?N*. (Ⅰ)证明:当x??1且x?0时,(1?x)p?1?px;

p?1c?p(Ⅱ)数列{an}满足a1?c,an?1?.证明:an?an?1?cp. an?a1npp1p1

2?(n2?n?3)Sn?3(n2?n)?0,2.(2014?广东文)设各项均为正数的数列{an}的前n项和为Sn满足Snn?N*.

(1)求a1的值;

(2)求数列{an}的通项公式; (3)证明:对一切正整数n,有

3.(2014?广东理)设数列{an}的前n项和为Sn,满足Sn?2nan?1?3n2?4n,n?N*,且S3?15. (1)求a1,a2,a3的值; (2)求数列{an}的通项公式.

4.(2014?湖南理)已知数列{an}满足a1?1,|an?1?an|?pn,n?N*. (Ⅰ)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值; (Ⅱ)若p?

5.(2014?江苏)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn?am,则

1,且{a2n?1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 21111?????.

a1(a1?1)a2(a2?1)an(an?1)3称{an}是“H数列”.

(1)若数列{an}的前n项和为Sn?2n(n?N*),证明:{an}是“H数列”;

(2)设{an}是等差数列,其首项a1?1,公差d?0,若{an}是“H数列”,求d的值;

(3)证明:对任意的等差数列{an},总存在两个“H数列” {bn}和{en},使得an?bn?en(n?N*)成立.

6.(2014?山东文)在等差数列{an}中,已知公差d?2,a2是a1与a4的等比中项. (Ⅰ)求数列{an}的通项公式;

(Ⅱ)设bn?an(n?1),记Tn??b1?b2?b3?b4???(?1)nbn,求Tn.

2

7.(2014?山东理)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)令bn?(?1)n?1

8.(2014?四川文)设等差数列{an}的公差为d,点(an,bn)在函数f(x)?2x的图象上(n?N*) (Ⅰ)证明:数列{bn}为等比数列;

(Ⅱ)若a1?1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2?和Sn.

9.(2014?四川理)设等差数列{an}的公差为d,点(an,bn)在函数f(x)?2x的图象上(n?N*). (1)若a1??2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn; (2)若a1?1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2?a1,求数列{n}的前n项

bnln24n,求数列{bn}的前n项和Tn. anan?11,求数列{anbn2}的前n项ln2和Tn.

10.(2014?天津文)已知q和n均为给定的大于1的自然数,设集合M?{0,1,2,?,q?1},集合

A?{x|x?x1?x2q???xnqn?1,xi?M,i?1,2,?n}. (Ⅰ)当q?2,n?3时,用列举法表示集合A;

(Ⅱ)设s,t?A,s?a1?a2q???anqn?1,t?b1?b2q???bnqn?1,其中ai,bi?M,i?1,2,?,n.证明:若an?bn,则s?t.

11.(2014?天津理)已知q和n均为给定的大于1的自然数,设集合M?{0,1,2,?,q?1},集合

A?{x|x?x1?x2q???xnqn?1,xi?M,i?1,2,?n}. (Ⅰ)当q?2,n?3时,用列举法表示集合A;

(Ⅱ)设s,t?A,s?a1?a2q???anqn?1,t?b1?b2q???bnqn?1,其中ai,bi?M,i?1,2,?,n.证明:若an?bn,则s?t.

12.(2014?浙江理)已知数列{an}和{bn}满足a1a2a3?an?(2)bn(n?N*).若{an}为等比数列,且a1?2,b3?6?b2.

(Ⅰ)求an和bn; (Ⅱ)设en? (i)求Sn;

(ii)求正整数k,使得对任意n?N*均有Sk…Sn.

an?18?2a,(n?1,2,?),记13.(2015?北京理)已知数列{an}满足:a1?N*,a1?36,且an?1??n2a?36,an?18?n11?(n?N*).记数列{en}的前n项和为Sn. anbn集合M?{an|n?N*}.

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4