最优捕鱼策略

最优捕鱼策略

摘要

为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源等)的开发必须适度。而在社会经济生活中,我们要使商业活动在一段时期内达到最大收益,因此我们要合理的开发资源,这时,我们不仅要考虑商业活动的当前经济效益,还要考虑生态效益及由此产生的对整体经济效益的影响。本文就是对渔业这类可再生资源的开发问题进行研究,利用相关的数学软件进行求解。

对于问题一,我们考虑渔场生产过程中的各年龄组鱼群数量的制约因素,将其分为两大类,第1,2龄鱼群为一类,该鱼群数量变化在一年内只受自然死亡率制约,写出鱼群数量满足的微分方程;第3,4龄鱼群为一类,其数量变化在前8个月受捕捞强度和自然死亡率影响,后4个月只受自然死亡率的制约,分阶段写出写出鱼群数量满足的微分方程;根据微分方程,求出在某时刻各鱼群的数量表达式(类似于人口增长模型)。因为捕捞是连续的,所以任意一个时刻的捕捞量为捕捞强度乘以鱼群的数量,又捕捞只在前8个月进行,则年捕捞量为前8个月各时刻鱼群数量的积分。最后建立年总捕捞量的函数与生产过程中满足的关系式,转化为非线性规划模型,利用lingo和matlab软件分别求解。

对于问题二,题中已给出各年龄组鱼群的初始值,我们利用问题一中所得到的迭代方程,可迭代地求出第i年初各年龄组鱼群的数量;再根据问题一中的捕捞量表达式,可写出5年的捕捞总量表达式,以5年捕捞总量最大为前提,利用matlab

软件求解出此时的捕捞强度,然后再验证在此捕捞强度下会不会使5年后鱼群的生产能力有太大的破坏。

最后,我们得出以下结论:可持续捕获条件下,捕捞强度为17.36292时,达到最大捕捞总质量3.887076?1011g; 5年后鱼群的生产能力不会有太大的破坏条件下,捕捞强度为k??17.5,17.8?,达到最大最大捕捞总质量1.6056?1012

关键词:渔业 最大收益 捕捞策略 生产能力 生长率 lingo matlab

一.问题重述

生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益,考虑具有4个年龄组:1龄鱼,……,4龄鱼的某种鱼。该鱼类在每年后4个月季节性集中产卵繁殖。而按规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与各年龄组鱼群条数的比例称为捕捞强度系数。使用只能捕捞3,4龄鱼的13mm网眼的拉网,其两个捕捞强度系数比为0.42:1。渔业上称这种方式为固定努力量捕捞。

该鱼群本身有如下数据:

各年龄组鱼的自然死亡率为0.8(1/年),其平均质量分别为5.07,11.55,17.86,22.99(单位:g);1,2龄鱼不产卵,平均每条4龄鱼产卵量为1.109?105(个),3龄鱼为其一半;卵孵化的成活率为1.22?1011(1.22?1011?n)(n为产卵总量);

有如下问题需要解决:

1.1. 问题一就是在实现可持续捕获(即每年开始捕捞时渔场中各年龄组鱼群条

数不变)的前提下,用固定努力量的捕捞方式,确定捕捞策略以得到最大捕捞总质量。

1.2.问题二就是给出了承包时各年龄组鱼群的数量,要求5年后鱼群的生产能力不会有太大的破坏,在用固定努力量的捕捞方式的前提下,确定捕捞策略,求出最大捕捞总质量。

综上所述,原问题实质上是给出了各年龄组鱼群之间数量的变化规律,并给出了它们的自然死亡率及捕捞和产卵的时间分布,并固定3、4龄鱼捕捞能力的比值,要求选择一定的捕捞能力系数,使得各年龄组鱼的数量在各年开始的第一天条数不变(第一问),5年后鱼群的生产能力不会有太大的破坏(第二问),并在此条件下,求到最大捕获量。

二.符号说明 三.模型假设

1.这种鱼在一年内的任何时间都会发生自然死亡,即死亡是一个连续的过程。 2.捕捞也是一个连续的过程,不是在某一时刻突然发生。 3.1、2龄鱼体形太小,不能被捕。

4.3、4龄鱼在一年中的后4个月的第一天集中一次产卵

5.i龄鱼到来年分别长一岁成为i+1龄鱼,i=1,2,3,其中上一年存活下来的4龄鱼仍是4龄鱼

四.模型的建立与求解

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4