ÀëÉ¢Êýѧ¼°Ó¦ÓÿκóϰÌâ´ð°¸

3. É輯ºÏa = {a, b}, b = {1, 2}, Ôò´Óaµ½bµÄËùÓÐÓ³ÉäÊÇ

__________________________ _____________, ÆäÖÐË«ÉäµÄÊÇ__________________________.

4. ÒÑÖªÃüÌ⹫ʽg£½?(p?q)¡Är£¬ÔògµÄÖ÷ÎöÈ¡·¶Ê½ÊÇ_______________________________

__________________________________________________________.

5.ÉègÊÇÍêÈ«¶þ²æÊ÷£¬gÓÐ7¸öµã£¬ÆäÖÐ4¸öÒ¶µã£¬ÔògµÄ×ܶÈÊýΪ__________£¬·ÖÖ¦µãÊýΪ________________.

___________________;a£­b£½ _____________________ .

7. ÉèrÊǼ¯ºÏaÉϵĵȼ۹ØÏµ£¬ÔòrËù¾ßÓеĹØÏµµÄÈý¸öÌØÐÔÊÇ______________________, ________________________, _______________________________.

8. ÉèÃüÌ⹫ʽg£½?(p?(q?r))£¬Ôòʹ¹«Ê½gÎªÕæµÄ½âÊÍÓÐ__________________________£¬_____________________________, __________________________.

9. É輯ºÏa£½{1,2,3,4}, aÉϵĹØÏµr1 = {(1,4),(2,3),(3,2)}, r1 = {(2,1),(3,2),(4,3)}, Ôò r1?r2 = ________________________,r2?r1 =____________________________, =________________________.

10. ÉèÓÐÏÞ¼¯a, b£¬|a| = m, |b| = n, Ôò| |?(a?b)| = _____________________________.

11 Éèa,b,rÊÇÈý¸ö¼¯ºÏ£¬ÆäÖÐrÊÇʵÊý¼¯£¬a = {x | -1¡Üx¡Ü1, x?r}, b = {x | 0¡Üx 2, x?r},Ôòa-b = __________________________ , b-a = __________________________ , a¡Éb = __________________________ , .

13. É輯ºÏa£½{2, 3, 4, 5, 6}£¬rÊÇaÉϵÄÕû³ý£¬ÔòrÒÔ¼¯ºÏÐÎʽ(Áоٷ¨)¼ÇΪ___________

_______________________________________________________.

14. ÉèÒ»½×Âß¼­¹«Ê½g = ?xp(x)??xq(x)£¬ÔògµÄÇ°Êø·¶Ê½ÊÇ

__________________________ _____. 15.ÉègÊǾßÓÐ8¸ö¶¥µãµÄÊ÷£¬ÔògÖÐÔö¼Ó_________Ìõ±ß²ÅÄܰÑg±ä³ÉÍêȫͼ¡£

16. Éèν´ÊµÄ¶¨ÒåÓòΪ{a, b},½«±í´ïʽ?xr(x)¡ú?xs(x)ÖÐÁ¿´ÊÏû³ý£¬Ð´³ÉÓëÖ®¶ÔÓ¦µÄÃüÌ⹫ʽÊÇ

__________________________________________________________________________.

17. É輯ºÏa£½{1, 2, 3, 4}£¬aÉϵĶþÔª¹ØÏµr£½{(1,1),(1,2),(2,3)}, s£½{(1,3),(2,3),(3,2)}¡£Ôòr?s£½ r12

?(a) - ?(b)£½

_____________________________________________________, r2£½

______________________________________________________. ¶þ¡¢Ñ¡ÔñÌâ

(c)??{{a}}?b?e (d){{a},1,3,4}?b. (c)¶Ô³ÆÐÔ (d)·´¶Ô³ÆÐÔ

1 É輯ºÏa={2,{a},3,4}£¬b = {{a},3,4,1}£¬eΪȫ¼¯£¬ÔòÏÂÁÐÃüÌâÕýÈ·µÄÊÇ( )¡£

(a){2}?a(b){a}?a (a)×Ô·´ÐÔ (a)Ͻç

2 É輯ºÏa={1,2,3},aÉϵĹØÏµr£½{(1,1),(2,2),(2,3),(3,2),(3,3)}£¬Ôòr²»¾ß±¸( ).

(b)´«µÝÐÔ (b)ÉϽç

3 Éè°ëÐò¼¯(a,¡Ü)¹ØÏµ¡ÜµÄ¹þ˹ͼÈçÏÂËùʾ£¬ÈôaµÄ×Ó¼¯b = {2,3,4,5},ÔòÔªËØ6ΪbµÄ( )¡£ (c)×îСÉϽç (d)ÒÔÉϴ𰸶¼²»¶Ô 4 ÏÂÁÐÓï¾äÖУ¬( )ÊÇÃüÌâ¡£

(a)Çë°ÑÃŹØÉÏ (b)µØÇòÍâµÄÐÇÇòÉÏÒ²ÓÐÈË (c)x + 5 6 (d)ÏÂÎçÓлáÂ𣿠5 ÉèiÊÇÈçÏÂÒ»¸ö½âÊÍ£ºd£½{a,b},

p(a,a) p(a,b) p(b,a) p(b,b)1 0 1 0 ÔòÔÚ½âÊÍiÏÂÈ¡ÕæÖµÎª1µÄ¹«Ê½ÊÇ( ).

(a)?x?yp(x,y)(b)?x?yp(x,y)(c)?xp(x,x) (d)?x?yp(x,y). (a)(1,2,2,3,4,5)(b)(1,2,3,4,5,5) (a)ºãÕæµÄ(b)ºã¼ÙµÄ (c)(1,1,1,2,3) (d)(2,3,3,4,5,6).

6. Èô¹©Ñ¡Ôñ´ð°¸ÖеÄÊýÖµ±íʾһ¸ö¼òµ¥Í¼Öи÷¸ö¶¥µãµÄ¶È£¬ÄÜ»­³öͼµÄÊÇ( ).

7. Éèg¡¢hÊÇÒ»½×Âß¼­¹«Ê½£¬pÊÇÒ»¸öν´Ê£¬g£½?xp(x), h£½?xp(x),ÔòÒ»½×Âß¼­¹«Ê½g?hÊÇ( ). (c)¿ÉÂú×ãµÄ (d)Ç°Êø·¶Ê½.

8 ÉèÃüÌ⹫ʽg£½?(p?q)£¬h£½p?(q??p)£¬ÔògÓëhµÄ¹ØÏµÊÇ( )¡£

(a)g?h(b)h?g(c)g£½h (d)ÒÔÉ϶¼²»ÊÇ. (a)a£½b (a)×Ô·´ÐÔ (b)a?b (b)´«µÝÐÔ (c)b?a

(d)a£½b£½?.

9 Éèa, bΪ¼¯ºÏ£¬µ±( )ʱa£­b£½b.

10 É輯ºÏa = {1,2,3,4}, aÉϵĹØÏµr£½{(1,1),(2,3),(2,4),(3,4)}, Ôòr¾ßÓÐ( )¡£

(c)¶Ô³ÆÐÔ (d)ÒÔÉϴ𰸶¼²»¶Ô

11 ÏÂÁйØÓÚ¼¯ºÏµÄ±íʾÖÐÕýÈ·µÄΪ( )¡£

(a){a}?{a,b,c} (b){a}?{a,b,c} (c)??{a,b,c} (d){a,b}?{a,b,c} (a) ¶ÔÈÎÒâx£¬g(x)¶¼È¡ÕæÖµ1.(b)ÓÐÒ»¸öx0£¬Ê¹g(x0)È¡ÕæÖµ1. (c)ÓÐijЩx£¬Ê¹g(x0)È¡ÕæÖµ1.(d)ÒÔÉϴ𰸶¼²»¶Ô. 13. ÉègÊÇÁ¬Í¨Æ½ÃæÍ¼£¬ÓÐ5¸ö¶¥µã£¬6¸öÃæ£¬ÔògµÄ±ßÊýÊÇ( ).

(a) 9Ìõ(b) 5Ìõ(c) 6Ìõ (d) 11Ìõ. (a)6(b)5 (c)10 (d)4.

14. ÉègÊÇ5¸ö¶¥µãµÄÍêȫͼ£¬Ôò´ÓgÖÐɾȥ( )Ìõ±ß¿ÉÒԵõ½Ê÷. 12 ÃüÌâ?xg(x)È¡ÕæÖµ1µÄ³ä·Ö±ØÒªÌõ¼þÊÇ( ). ?0 ?1

15. ÉèͼgµÄÏàÁÚ¾ØÕóΪ? ?1??1??1

(a)4, 5 (b)5, 6 Èý¡¢¼ÆËãÖ¤Ã÷Ìâ 1111? 0100?

?£¬ÔògµÄ¶¥µãÊýÓë±ßÊý·Ö±ðΪ( ). 1011? ?

0101?0110?? (c)4, 10 (d)5, 8.

1.É輯ºÏa£½{1, 2, 3, 4, 6, 8, 9, 12}£¬rΪÕû³ý¹ØÏµ¡£ (1) »­³ö°ëÐò¼¯(a,r)µÄ¹þ˹ͼ£»

(2) д³öaµÄ×Ó¼¯b = {3,6,9,12}µÄÉϽ磬Ͻ磬×îСÉϽ磬×î´óϽ磻 (3) д³öaµÄ×î´óÔª£¬×îСԪ£¬¼«´óÔª£¬¼«Ð¡Ôª¡£ 2.

É輯ºÏa£½{1, 2, 3, 4}£¬aÉϵĹØÏµr£½{(x,y) | x, y?a ÇÒ x ? y}, Çó(1) »­³örµÄ¹ØÏµÍ¼£» (2) д³örµÄ¹ØÏµ¾ØÕó. 3.

ÉèrÊÇʵÊý¼¯ºÏ£¬?,?,?ÊÇrÉϵÄÈý¸öÓ³É䣬?(x) = x+3, ?(x) = 2x, ?(x) £½ x/4,ÊÔÇó¸´ºÏÓ³Éä???£¬???, ???, ???£¬?????. 4. ÉèiÊÇÈçÏÂÒ»¸ö½âÊÍ£ºd = {2, 3}, a 3 b 2 f (2) 3 f (3) 2 p(2, 2) 0 p(2, 3) 0 p(3, 2) 1 p(3, 3) 1

ÊÔÇó (1) p(a, f (a))¡Äp(b, f (b)); (2) ?x?y p (y, x).

5. É輯ºÏa£½{1, 2, 4, 6, 8, 12}£¬rΪaÉÏÕû³ý¹ØÏµ¡£ (1) »­³ö°ëÐò¼¯(a,r)µÄ¹þ˹ͼ£»

(2) д³öaµÄ×î´óÔª£¬×îСԪ£¬¼«´óÔª£¬¼«Ð¡Ôª£»

(3) д³öaµÄ×Ó¼¯b = {4, 6, 8, 12}µÄÉϽ磬Ͻ磬×îСÉϽ磬×î´ó

Ͻç. 6. ÉèÃüÌ⹫ʽg = ?(p¡úq)¡Å(q¡Ä(?p¡úr)), ÇógµÄÖ÷ÎöÈ¡·¶Ê½¡£ 7. (9·Ö)ÉèÒ»½×Âß¼­¹«Ê½£ºg = (?xp(x)¡Å?yq(y))¡ú?xr(x)£¬°Ñg»¯³ÉÇ°Êø·¶Ê½. 9. ÉèrÊǼ¯ºÏa = {a, b, c, d}. rÊÇaÉϵĶþÔª¹ØÏµ, r = {(a,b), (b,a), (b,c), (c,d)},

(1) Çó³ör(r), s(r), t(r)£» (2) »­³ör(r), s(r), t(r)µÄ¹ØÏµÍ¼. 11. ͨ¹ýÇóÖ÷ÎöÈ¡·¶Ê½ÅжÏÏÂÁÐÃüÌ⹫ʽÊÇ·ñµÈ¼Û£º

(1) g = (p¡Äq)¡Å(?p¡Äq¡Är) (2) h = (p¡Å(q¡Är))¡Ä(q¡Å(?p¡Är)) 13. ÉèrºÍsÊǼ¯ºÏa£½{a, b, c, d}ÉϵĹØÏµ£¬ÆäÖÐr£½{(a, a),(a, c),(b, c),(c, d)}, c),(b, d),(d, d)}.

(1) ÊÔд³örºÍsµÄ¹ØÏµ¾ØÕó£» (2) ¼ÆËãr?s, r¡Ès, r1, s1?r1. £­ £­ £­

s£½{(a, b),(b, ËÄ¡¢Ö¤Ã÷Ìâ

1. ÀûÓÃÐÎʽÑÝÒï·¨Ö¤Ã÷£º{p¡úq, r¡ús, p¡År}Ô̺­q¡Ås¡£ 2. Éèa,bΪÈÎÒ⼯ºÏ£¬Ö¤Ã÷£º(a-b)-c = a-(b¡Èc).

3. (±¾Ìâ10·Ö)ÀûÓÃÐÎʽÑÝÒï·¨Ö¤Ã÷£º{?a¡Åb, ?c¡ú?b, c¡úd}Ô̺­a¡úd¡£ 4. (±¾Ìâ10·Ö)a, bΪÁ½¸öÈÎÒ⼯ºÏ£¬ÇóÖ¤£º a£­(a¡Éb) = (a¡Èb)£­b .

²Î¿¼´ð°¸ Ò»¡¢Ìî¿ÕÌâ

1. {3}; {{3},{1,3},{2,3},{1,2,3}}. 2. 2.

3. ?1= {(a,1), (b,1)}, ?2= {(a,2), (b,2)},?3= {(a,1), (b,2)}, ?4= {(a,2), (b,1)}; ?3, ?4. 4. (p¡Ä?q¡Är). 5. 12, 3.

6. {4}, {1, 2, 3, 4}, {1, 2}. 7. ×Ô·´ÐÔ£»¶Ô³ÆÐÔ£»´«µÝÐÔ. 8. (1, 0, 0), (1, 0, 1), (1, 1, 0).

9. {(1,3),(2,2),(3,1)}; {(2,4),(3,3),(4,2)}; {(2,2),(3,3)}. 10. 2m?n.

11. {x | -1¡Üx 0, x?r}; {x | 1 x 2, x?r}; {x | 0¡Üx¡Ü1, x?r}. 12. 12; 6. 13. {(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}. 14. ?x(?p(x)¡Åq(x)). 15. 21.

16. (r(a)¡Är(b))¡ú(s(a)¡Ås(b)). 17. {(1, 3),(2, 2)}; {(1, 1),(1, 2),(1, 3)}. ¶þ¡¢Ñ¡ÔñÌâ

1. c. 2. d. 3. b. 4. b. 5. d. 6. c. 7. c.

8. a. 9. d. 10. b. 11. b. 13. a. 14. a. Èý¡¢¼ÆËãÖ¤Ã÷Ìâ 1.(1) n2 15. d

(2) bÎÞÉϽ磬ҲÎÞ×îСÉϽ硣Ͻç1, 3; ×î´óϽçÊÇ3. (3) aÎÞ×î´óÔª£¬×îСԪÊÇ1£¬¼«´óÔª8, 12, 90+; ¼«Ð¡ÔªÊÇ1. 2.r = {(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)}. (1) ?1?1

(2)mr?? ?1??1

01110011

0?0?? 0??1?

3. (1)???£½?(?(x))£½?(x)+3£½2x+3£½2x+3.

(2)???£½?(?(x))£½?(x)+3£½(x+3)+3£½x+6, (3)???£½?(?(x))£½?(x)+3£½x/4+3, (4)???£½?(?(x))£½?(x)/4£½2x/4 = x/2,

(5)?????£½??(???)£½???+3£½2x/4+3£½x/2+3. 4. (1) p(a, f (a))¡Äp(b, f (b)) = p(3, f (3))¡Äp(2, f (2)) = p(3, 2)¡Äp(2, 3) = 1¡Ä0 = 0.

(2) ?x?y p (y, x) = ?x (p (2, x)¡Åp (3, x))

= (p (2, 2)¡Åp (3, 2))¡Ä(p (2, 3)¡Åp (3, 3)) = (0¡Å1)¡Ä(0¡Å1) = 1¡Ä1 = 1. 5. (1)

(2) ÎÞ×î´óÔª£¬(3) bÎÞÉϽ磬

×îСԪ1£¬¼«´óÔª8, 12; ¼«Ð¡ÔªÊÇ1. ÎÞ×îСÉϽ硣Ͻç1, 2; ×î´óϽç2. 6. g = ?(p¡úq)¡Å(q¡Ä(?p¡úr))

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@) ËÕICP±¸20003344ºÅ-4