数学建模关于优化问题的论文

暑期数学建模竞赛

承 诺 书

我们仔细阅读了暑期数学建模竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B中选择一项填写): A 参赛队员 (打印并签名) :1. 2. 3.

指导教师或指导教师组负责人 (打印并签名): 教练组 日期: 11 年 8 月 12 日

评阅编号(由组委会评阅前进行编号):

暑期数学建模竞赛

编 号 专 用 页

评阅编号(由组委会评阅前进行编号): 评阅记录(可供评阅时使用): 评 阅 人 评 分 备 注 统一编号: 评阅编号:

多因素条件下作物施肥效果分析

摘要

本文是关于作物施肥数量与结构的优化问题,根据不同目标对施肥量与肥料搭配比例进行调整,达到各目标的最优。

首先,基于一元线性回归模型,以一种肥料作为自变量,另外两种肥料固定在第七水平,建立了六个一元回归方程,分别研究某一种肥料变化时,该肥料施肥量与产量的关系。根据散点图趋势,初步选取适当的一元函数,为了使散点图更直观准确,将原数据进行无量纲化处理,得到0到1间的值。利用eviews软件进一步对一元函数进行拟合,选取显着性最高的拟合结果,求解时,对非线性的回归方程,通过取对数将其线性化,得到结果后再将其转换成原函数形式,最终得到六个反映施肥量与产量关系的一元回归模型。为了提高六个回归方程整体的显着性,本文以三种肥料的施肥量同时作为自变量,建立三元二次回归模型,检验均通过,并具有高度的显着性,拟合效果较好。

其次,基于问题一中的一元线性回归模型与三元二次回归模型分别求解回归方程的最大值,即产量最大值。比较两个模型的结果,看出,由三元二次回归模型得到的产量更大,其中土豆与生菜产量的最大值分别为44.95t/ha,23.04t/ha。土豆对应的N、P、K肥料的施肥量分别为293.13kg/ha,250.0kg/ha,540.0kg/ha。生菜对应的N、P、K肥料的施肥量分别为212.06kg/ha,426.91kg/ha,665.69kg/ha。

再次,考虑到施肥的经济性,以产值和施肥费用作为自变量,以总收益作为因变量,建立收益最大化模型。分别基于反映产量与施肥量关系的一元回归模型与三元二次回归模型,进行求解。由一元回归模型得到结果,当生菜K肥施肥量无穷大时,收益也趋近于无穷大,显然不合理,本文以一元二次函数对六个回归方程重新进行拟合,检验看出,显着性不高,但基于新的回归方程得到的结果更加合理,更符合实际情况,具有较高的实用性。基于三元二次回归模型进行求解时,通过(0,0,0,0)点的引入,增加了三种肥料交互影响产生的交叉项,避免了肥料搭配不合理造成的大量浪费。比较两种模型的结果看出,基于三元二次回归方程得到的收益更大,土豆与生菜的最大值分别为102500元/公顷,52023元/公顷。

再次,引入环保因素时,通过两种方法实现,一是基于收益最大化模型,将污染指数作为限制条件,以收益最大为目标,建立线性规划收益最大化模型。二是引入目标偏差变量,以偏差变量之和最小为目标,以污染指数,肥料搭配比例作为约束条件,建立多目标规划模型,以环境指数小于25为前提,追求收益尽量大。比较两种模型的结果看出,多目标规划的的结果更符合本问的要求,土豆与生菜的最大收益值分别为,环境指数为25,属于轻度污染, K肥施肥量超过满意值,但K肥适当增加能够增大收益,对土地没有造成污染,收益实际值与满意值相差不大,结果比较合理,符合本问的要求。

最后对模型应用效果作量化估计,难点在于如何对优化模型进行改进,得到评价模型。本文利用多目标规划结果中满意值与偏差值的差值占满意值的比例作为单目标的满意度,利用层次分析法得到单目标权重值,根据单目标的权重值与满意度求和可以得到多目标满意度,根据多目标总体的满意度对模型应用效果作量化估计。从而建立基于层次分析法与多目标规划的评价模型。最后对模型的推广作初步讨论,验证了模型较高的应用价值。

1.问题的重述

农作物生长所需的营养素主要是氮(N)、磷(P)、钾(K)。某作物研究所在某地区

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4