º£µíÇø¸ßÈýÄê¼¶µÚ¶þѧÆÚÆÚÖÐÁ·Ï°
Êý ѧ £¨Àí£©
²Î¿¼´ð°¸¼°ÆÀ·Ö±ê×¼ 2019£®4
˵Ã÷£º ºÏÀí´ð°¸¾ù¿É×ÃÇ鏸·Ö£¬µ«²»µÃ³¬¹ýÔÌâ·ÖÊý.
µÚ¢ñ¾í£¨Ñ¡ÔñÌâ ¹²40·Ö£©
Ò»¡¢Ñ¡ÔñÌ⣨±¾´óÌâ¹²8СÌâ,ÿСÌâ5·Ö,¹²40·Ö£©
ÌâºÅ ´ð°¸ 1 C 2 D 3 B 4 C 5 A 6 C 7 A 8 B µÚ¢ò¾í£¨·ÇÑ¡ÔñÌâ ¹²110·Ö£©
¶þ¡¢Ìî¿ÕÌ⣨±¾´óÌâ¹²6СÌâ,ÿСÌâ5·Ö, ÓÐÁ½¿ÕµÄСÌ⣬µÚÒ»¿Õ3·Ö£¬µÚ¶þ¿Õ2·Ö£¬¹²30·Ö£©
129£®30 10£®7 11£®¢Ù£¬¢Ü 12£®1 13£®(,) 14£®?£»18??.
35Èý¡¢½â´ðÌâ(±¾´óÌâ¹²6СÌâ,¹²80·Ö) 15£®£¨±¾Ð¡ÌâÂú·Ö13·Ö£© ½â£º£¨¢ñ£©ÓÉͼ¿ÉÖªT?4(??2??)??,???2£¬ 24T ¡¡¡¡¡¡2·Ö
ÓÖÓÉf()?1µÃ£¬sin(???)?1£¬ÓÖf(0)??1£¬µÃsin???1
?2
?|?|???????2£¬ ¡¡¡¡¡¡4·Ö
£¨¢ò£©ÓÉ£¨¢ñ£©Öª£ºf(x)?sin(2x?ÒòΪg(x)?(?cos2x)[?cos(2x??2)??cos2x ¡¡¡¡¡¡6·Ö
1)]?cos2xsin2x?sin4x ¡¡¡¡¡¡9·Ö 22??k??k?? ËùÒÔ£¬2k???4x?2k??£¬¼´??x?? (k?Z).¡¡¡¡¡12·Ö
222828k??k??¹Êº¯Êýg(x)µÄµ¥µ÷ÔöÇø¼äΪ[ ¡¡¡¡¡13·Ö ?,?] (k?Z).
282816£®£¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£ºÉèÖ¸ÕëÂäÔÚA,B,CÇøÓò·Ö±ð¼ÇΪʼþA,B,C.
ÔòP(A)??111,P(B)?,P(C)?. 632111?? 632
¡¡¡¡¡¡3·Ö
£¨¢ñ£©Èô·µÈ¯½ð¶î²»µÍÓÚ30Ôª£¬ÔòÖ¸ÕëÂäÔÚA»òBÇøÓò.
?P?P(A)?P(B)? ¡¡¡¡¡¡6·Ö
¼´Ïû·Ñ128ÔªµÄ¹Ë¿Í£¬·µÈ¯½ð¶î²»µÍÓÚ30ÔªµÄ¸ÅÂÊÊÇ£¨¢ò£©ÓÉÌâÒâµÃ£¬¸Ã¹Ë¿Í¿Éת¶¯×ªÅÌ2´Î.
Ëæ»ú±äÁ¿XµÄ¿ÉÄÜֵΪ0£¬30£¬60£¬90£¬120.
1. 2
¡¡¡¡¡¡7·Ö
111P(X?0)???;224111P(X?30?)???2;2331111 P(X?60?)???2??2633111P(X?90?)???2;369111P(X?120?)??.66365 ; 18¡¡¡¡¡¡10·Ö
ËùÒÔ£¬Ëæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º 0 30 60 P 90 120 X 1 41 35 181 91 36 ¡¡¡¡¡¡12·Ö
ÆäÊýѧÆÚÍûEX?0?11511?30??60??90??120??40 .¡¡¡13·Ö 431893617£® £¨±¾Ð¡ÌâÂú·Ö14·Ö£©
½â£º£¨¢ñ£©Ö¤Ã÷£ºÒòΪA1A?AC£¬ÇÒOΪACµÄÖе㣬 1 ËùÒÔAO?AC. 1
¡¡¡¡¡¡1·Ö
ÓÖÓÉÌâÒâ¿ÉÖª£¬Æ½ÃæAAC 11C?Æ½ÃæABC£¬½»ÏßΪAC£¬ÇÒA1O?Æ½ÃæAA1C1C£¬ ËùÒÔA1O?Æ½ÃæABC.
¡¡¡¡¡¡4·Ö
£¨¢ò£©Èçͼ£¬ÒÔOΪԵ㣬OB,OC,OA1ËùÔÚÖ±Ïß·Ö±ðΪx£¬y£¬zÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ. ÓÉÌâÒâ¿ÉÖª£¬A1A?AC?AC?2,ÓÖAB?BC,AB?BC,?OB?11AC?1, 2ËùÒÔµÃ:O(0,0,0),A(0,?1,0),A1(0,0,3),C(0,1,0),C1(0,2,3),B(1,0,0) ÔòÓУºA1C?(0,1,?3),AA1?(0,1,3),AB?(1,1,0).
¡¡¡¡¡¡6·Ö
ÉèÆ½ÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿Îªn?(x,y,z)£¬ÔòÓÐ
A1zC1B1AOCyBx
??3?n?AA1?0?y?3z?0 ?£¬Áîy?1£¬µÃx??1,z?? ??3???x?y?0?n?AB?0 ËùÒÔn?(?1,1,? cos?n,A1C??3). 3n?A1C|n||A1C|? ¡¡¡¡¡¡7·Ö 21. 7 ¡¡¡¡¡¡9·Ö
ÒòΪֱÏßA1CÓëÆ½ÃæA1ABËù³É½Ç?ºÍÏòÁ¿nÓëA1CËù³ÉÈñ½Ç»¥Ó࣬ËùÒÔsin??21. 7
¡¡¡¡¡¡10·Ö ¡¡¡¡¡¡11·Ö
£¨¢ó£©ÉèE?(x0,y0,z0),BE??BC1,
?x0?1???¼´(x0?1,y0,z0)??(?1,2,3)£¬µÃ?y0?2?
??z0?3?ËùÒÔE?(1??,2?,3?),µÃOE?(1??,2?,3?), ÁîOE//Æ½ÃæA1AB£¬µÃOE?n=0 £¬
¡¡¡¡¡¡12·Ö ¡¡¡¡¡¡13·Ö
1 ¼´?1???2????0,µÃ??,
2¼´´æÔÚÕâÑùµÄµãE£¬EΪBC1µÄÖеã.
18.£¨±¾Ð¡ÌâÂú·Ö13·Ö£© ½â£º£¨¢ñ£©µ±a??1ʱ£¬f(x)?x?lnx,
¡¡¡¡¡¡14·Ö
1 µÃf?(x)?1?,
x Áîf?(x)?0£¬¼´1? ¡¡¡¡¡¡2·Ö
1?0£¬½âµÃx?1£¬ËùÒÔº¯Êýf(x)ÔÚ(1,??)ÉÏΪÔöº¯Êý£¬ x
¡¡¡¡¡¡4·Ö
¾Ý´Ë£¬º¯Êýf(x)ÔÚ[e,e2]ÉÏΪÔöº¯Êý£¬
¶øf(e)?e?1£¬f(e2)?e2?2£¬ËùÒÔº¯Êýf(x)ÔÚ[e,e2]ÉϵÄÖµÓòΪ[e?1,e2?2]
¡¡¡¡¡¡6·Ö
aa£¨¢ò£©ÓÉf?(x)?1?,Áîf?(x)?0£¬µÃ1??0,¼´x??a,
xx µ±x?(0,?a)ʱ£¬f?(x)?0£¬º¯Êýf(x)ÔÚ(0,?a)Éϵ¥µ÷µÝ¼õ£»
µ±x?(?a,??)ʱ£¬f?(x)?0£¬º¯Êýf(x)ÔÚ(?a,??)Éϵ¥µ÷µÝÔö£» ¡¡¡¡¡7·Ö Èô1??a?e£¬¼´?e?a??1£¬Ò׵ú¯Êýf(x)ÔÚ[e,e2]ÉÏΪÔöº¯Êý£¬
´Ëʱ£¬f(x)max?f(e2)£¬ÒªÊ¹f(x)?e?1¶Ôx?[e,e2]ºã³ÉÁ¢£¬Ö»Ðèf(e2)?e?1¼´¿É£¬