06 平面解析几何
考纲原文
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. (3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式.
(十五)圆锥曲线与方程
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.
(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. (4)理解数形结合的思想. (5)了解圆锥曲线的简单应用.
预计2019年的高考中,对平面解析几何部分的考查总体保持稳定,其考查情况的预测如下:
1
直线和圆的方程问题单独考查的几率很小,多作为条件和圆锥曲线结合起来进行命题;直线与圆的位置关系是命题的热点,需给予重视,试题多以选择题或填空题的形式命制,难度中等及偏下.
x22
样题4 (2018浙江)已知点P(0,1),椭圆+y=m(m>1)上两点A,B满足AP=2PB,则当m=___________
4时,点B横坐标的绝对值最大. 【答案】5
【解析】设A(x1,y1),B(x2,y2), 由AP?2PB得?x1?2x2,所以
,
,
,
,
因为A,B在椭圆上,所以
所以,
x22所以?4与
,
对应相减得y2?3?m,4,
当且仅当m?5时取最大值.
【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 样题5 (2018新课标全国Ⅱ文科)双曲线
A.y??2x C.y??【答案】A
的离心率为3,则其渐近线方程为
B.y??3x D.y??2x 23x 2
2
样题6 (2018新课标全国Ⅲ文科)已知双曲线
的离心率为2,则点(4,0)到
C的渐近线的距离为
A.2 C.
B.2
32 2D.22 【答案】D 【解析】
,?b?1,所以双曲线C的渐近线方程为x?y?0,所以点(4,0)a到渐近线的距离
,故选D.
考向三 直线与圆锥曲线
样题7 (2017新课标全国II文科)过抛物线C:y?4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN?l,则M到直线NF的距离为 A.5 C.23 【答案】C
B.22 D.33 2
样题8 (2018新课标全国Ⅱ文科)设抛物线C:y2?4x的焦点为F,过F且斜率为k(k?0)的直线l与C交于A,B两点,|AB|?8. (1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
3