高考数学空间向量与立体几何备考复习教案

实用精品文献资料分享

2012届高考数学空间向量与立体几何备考复习教案

专题四:立体几何 第三讲 空间向量与立体几何

【最新考纲透析】 1.空间向量及其运算 (1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的线性运算及其坐标表示。 (2)掌握空间向量的线性运算及其坐标表示。 (3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 2.空间向量的应用 (1)理解直线的方向向量与平面的法向量。 (2)能用向量语言表述直线与直线,直线与平面,平面与平面的垂直、平行关系。 (3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。 (4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何 问题中的应用。

【核心要点突破】 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:(2010?安徽高考理科?T18)如图,在多面体 中,四边形 是正方形, ∥ , , , , , 为 的中点。 (1)求证: ∥平面 ; (2)求证: 平面 ; (3)求二面角 的大小。 【命题立意】本题主要考查了空间几何体的 线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 (1) (2) (3) 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,

实用精品文献资料分享

转化为向量问题进行求解证明。应用向量法解题,思路简单,易于操作,推荐使用。 要点考向2:利用空间向量求线线角、线面角 考情聚焦:1.线线角、线面角是高考命题的重点内容,几乎每年都考。 2.在各类题型中均可出现,特别以解答题为主,属于低、中档题。 考向链接:1.利用空间向量求两异面直线所成的角,直线与平面所成的角的方法及公式为: (1)异面直线所成角 设 分别为异面直线 的方向向量,则 (2)线面角 设 是直线 的方向向量, 是平面的法向量,则 2.运用空间向量坐标运算求空间角的一般步骤为: (1)建立恰当的空间直角坐标。(2)求出相关点的坐标。(3)写出向量坐标。(4)结合公式进行论证、计算。(5)转化为几何结论。 例2:(2010?辽宁高考理科?T19)已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC= AB,N为AB上一点,AB=4AN,M,S分别 为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小. 【命题立意】本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的计算问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】建系,写出有关点坐标、向量的坐标, 计算 的数量积,写出答案; 求平面CMN的法向量,求线面角的余弦,求线面角,写出答案。 【规范解答】 设PA=1,以A为原点,射线AB、AC、AP分别为x,y,z轴正方向建立空间直角坐标系,如图。 则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0, ),N( ,0,0),S(1, ,0) (I) 【方法技巧】(1)空间中证明线线,线面垂直,经常用向量法。 (2)求线面角往往转化成直线的方向向量与平面的法向量的夹角问题来解决。 (3)线面角的范围是0°~90°,因此直线的方向向 量与平面法向量的夹角的余弦是非负的,要取绝对值。 要点考向3:利用空间向量求二面角 考情聚焦:1.二面角是高考命题的重点内容,是年年必考的知识点。 2.常以解答题的形式出现,属中档题或高档题。 考向链接:求二面角最常用的办法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角。 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 例3:(2010?天津高考理科?T19) 如图,在长方体 中, 、 分别是棱 , 上的点, ,

实用精品文献资料分享

求异面直线 与 所成角的余弦值; 证明 平面 求二面角 的正弦值。 【命题立意】本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。 【思路点拨】建立空间直角坐标系或常规方法处理问题。 【规范解答】方法一:以A为坐标原点,AB所在直线为X轴,AD所在直线为Y轴建立空间直角坐标系(如图所示),设 ,依题意得 , , , 易得 , ,于是 , 所以异面直线 与 所成角的余弦值为 。 证明:已知 , , 于是 ? =0, ? =0.因此, , ,又 所以 平面 (3)解:设平面 的法向量 ,则 ,即 不妨令X=1,可得 。由(2)可知, 为平面 的一个法向量。 于是 ,从而 所以二面角 的正弦值为 要点考向4:利用空间向量解决探索性问题 考情聚焦:立体几何中已知结论寻求结论成立的条件(或是否存在问题),能较好地考查学生的逻辑推理能力和空间想象能力,是今后考查的重点,也能很好地体现新课标高考的特点。 例4:(2010?福建高考理科?T18)如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O的直径。 (I)证明:平面A1ACC1 平面B1BCC1; (II)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自三棱柱ABC-A1B1C1内的概率为p。 (i)当点C在圆周上运动时,求p的最大值; (ii)记平面A1ACC1与平面B1OC所成的角为 ( )。当p取最大值时,求cos 的值。 【命题立意】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想、必然与或然思想。 【思路点拨】第一步先由线线垂直得到线面垂直,再由线面垂直得到面面垂直;第二步首先求出长方体的体积,并求解三棱柱的体积的最大值,利用体积比计算出几何概率。立体几何中 我们可以利用向量处理角度问题,立体几何中涉及的角:有异面直线所成的角、直线与平面所成的角、二面角等。关于角的计算,均可归结为两个向量的夹角。对于空间向量 ,有 ,利用这一结论,我们可以较方便地处理立体几何中的角的问题。 【规范解答】 (I) 平面 , 平面 , ,又 是 的直径, ,又 , 平面 ,而 平面 ,所以平面 平

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4