第二章
2.2 证明下列异或运算公式
(1)A?0?A
证明: 左侧?A?0?A?0 得证
?A
(2)A?1?A
证明: 左侧?A?1?A?1
?A
得证
(3)
A?A?0
证明: 左侧?A?A?A?A
?0
得证
(4)A?A?A
证明: 左侧?A?A?A?A 得证
?A
(5)A?B?A?B 证明: 右侧?A?B?A?B
?A?B?A?B
?A?B
得证 (6)
(A?B)?C?A?(B?C)
证明: 等式右侧?A?(B?C)
?A?(BC?BC)
?A(BC?BC)?A(BC?BC) ?A(BC?BC)?ABC?ABC ?A(B?C)(B?C)?ABC?ABC ?A(BB?BC?BC?CC)?ABC?ABC
?ABC?ABC?ABC?ABC
?(AB?AB)C?(AB?AB)C ?(A?B)C?(A?B)C
(将看成一个整体(A?B),用M来表示
?MC?MC
?M?C 再替换M,则)
?(A?B)?C
得证
2.3 用逻辑代数法将下列逻辑函数式化简为最简与或表达式 (1)L=AB(BC+A) 解:L=AB(BC+A) =ABC+AB =AB(C+1) =AB (2)
L=AB?AB?B 解:L=AB?AB?B
=AB?(A?1)B =AB?B =AB?B+ A =A+B (3) L?A?ABC?ABC?BC?BC 解:L?A?ABC?ABC?BC?BC
(4)
(5) (6)
?A(1?BC?ABC)?C(B?B)?A?C
L?AB?BD?DCE?AD
解:L?AB?(A?B)D?DCE
?AB?ABD?DCE
?AB?D?DCE
?AB?D(1?CE)
?AB?D
L?(A?B)AB?AB?AB 解:L?(A?B)(A?B)?AB
?(A?B)?AB ?AB?AB?AB ?AB?AB?AB?AB
?A(B?B)?B(A?A)
?A?B
L?(A?B?C)?(D?E)(A?B?C?DE)
解:L?(A?B?C)?(D?E)(A?B?C?DE)
?((A?B?C)?(D?E))(ABC?DE)
?(ABC?DE)(ABC?DE)
?(0?DE(ABC)?ABCDE?DE)
?DE
2.4 已知函数L(A,B,C)?ABC?ABC?ABC。 (1) 化简逻辑函数为最简与或表达式