水体环境中天然有机质腐殖酸研究进展

水体环境中天然有机质腐殖酸研究进展

摘要:腐殖酸是大量存在于土壤、河湖海沉积物以及风化煤、褐煤、泥炭中的天然有机高分子化合物。本文介绍了腐殖酸的组成、结构和性质;阐述了其在水处理中的应用以及其发展前景。着眼研究腐殖酸与土壤、水体和生物多界面的环境过程和机理。文章主要以水环境为例,对环境污染物效应和去除技术等几个方面的研究进展进行了简要的总结;对现代腐殖酸的研究趋势进行了展望。 关键词:天然有机质;腐植酸;腐植酸的性能;水处理;应用前景

水源水质复合污染的多介质联合作用机制及污染物的生物地球化学循环过程已经成为亟待解决的科学问题,其中天然有机质在其中起到很关键的作用。天然有机质腐殖酸对环境中碳的循环,金属离子和有机化合物的迁移转化,及水处理中消毒副产物的形成等都有重要影响。腐殖类物质广泛存在于土壤、底泥、湖泊、河流以及海洋中,它是指那些动、植物残体经微生物和化学过程分解后形成的一种褐色或黑色的复合物[1-2]。土壤和水体中的有机质主要为腐殖物质,可占这两种生态体系中总有机质的50%~80%[3-5]。

腐植酸是一种液态的有机质。一般土壤有机质的来源大都是动物、植物及微生物的残体或排泄物等经一连串长期物理、化学性及微生物作用而产生。其中腐植质是土壤有机质最重要的一种成分。这种黑色稠状的腐植质具有巨大的有机分子结构,使土壤之中有机质能充分发挥作用。所以,腐植质可视为土壤有机质的精华。而腐植酸又正是腐植质成分中最具生化活性,最具利用价值的部份。过去科学家们都是在实验室内从土壤或植物体内以化学方法提炼腐植酸,不但量少,且价格昂贵。目前已发展出从泥炭或含腐植质的矿石中萃取溶解出腐植酸的技术,如此不仅使腐植酸可以大量提供农业使用,且使腐植酸成为一种新兴的土壤改良剂。

一、天然有机质腐殖酸的研究历史

腐殖物质环境行为与其结构组成有密切关系,腐殖质与矿物组分一起构成土壤和水体颗粒物的主体,因此腐殖物质不是一种简单化合物,其组成复杂,没有统一的结构 。Ghabbour等[6]报道了研究者们从18世纪末就已经开始对腐植酸的研究。化学家、地球化学家、水文学家和环境学家也逐渐关注在生态圈无处不在的腐植质。

随着科学技术进步,研究 者逐渐深入地对腐 殖质的具体结构和微观特征等进行了较详细的研究。

目前,关于腐殖酸形成方式主要有4种假说:(1)植物转化:由植物残体中不为微生 物分解的组分转化而来;(2)生物化学:复杂有机物经微生物作用后部分矿化,再经氧化和缩合等作用形成单体腐殖酸,最终形成高分子腐殖酸;(3)细胞自溶 :微生物自溶后的产物经过缩合和聚合后形成;(4)微生物合成:微生物在体内合成腐殖酸,死亡后将腐殖酸 自溶析出。专家从不同角度对腐殖酸的形成作了猜测,但这4种假说中哪一种更接近真实情况目前还很难说清楚,也许腐殖酸的形成是这4种过程共同作用的结果。

1

二、腐植酸的性能及提取方法

1、腐殖酸的吸附性能

由于腐殖酸含有多种功能基,如羧基、醇羟基、酚羟基、羰基和甲氧基等,因而具有很高的反应活性(如吸附作用、络合作用、氧化还原作用),能与环境中的金属离子、氧化物、氢氧化物、矿物质、有机质、有毒活性污染物等发生相互作用。

2. 提取方法

1)酸抽提剂法。

童同家等采用酸抽提剂法从风化煤中提取了能满足汽车用蓄电池技术条件要求的腐殖酸。其制备工艺:风化煤一加入稀硫酸一蒸汽煮沸—搅拌沉淀一取出上部液体一水洗→沉淀物烘干→粉碎过筛→包装。

酸抽提剂法提取腐殖酸工艺简单,易于操作,生产周期短,而且省去碱法的碳酸物,因此酸法腐殖酸价格与碱法腐殖酸价格相比,约降低30%。但酸抽提剂法提取的腐殖酸因含杂质太多,应用受到了限制。

2)微生物溶解法。

微生物溶解法提取腐殖酸反应周期长,产率低但反应温和,可清洁转化,产物生物活性高,现主要处于试验研究阶段,离工业生产还有一定差距。

3)碱溶酸析法。

目前主要采用碱溶酸析法即碱抽提剂法生产腐殖酸,方法十分简单而被广泛利用。徐东耀等用硫酸溶液和氢氧化钠溶液从褐煤中提取了腐殖酸。

由于某些原料中游离的腐殖酸含量不是很高,直接抽提腐殖酸的提取率很不理想。为了提高腐殖酸的提取率,通常对原料先做预处理再进行碱溶酸析。常用的预处理方法有空气氧化预处理、硝酸氧化预处理、超声波预处理3种。针对特殊的原料,在提取腐殖酸的过程中可采用一些较为特殊的方法。例如,对于水体沉积物而言,灰分较多,文启孝等用稀HCl、HF混合液对其进行了预处理,达到了降低灰分的目的。土壤中腐殖质由难溶于水的钙、镁、铁、铝旧等离子络合,易溶于水的钾、钠等离子结合的腐殖质以及极少量游离态存在的腐殖质等组成。杨敏等采用0.1 mol/L焦磷酸钠和0.1 mol/L氢氧化钠混合液提取腐殖质,可以将土壤中难溶于水和易溶于水的结合态腐殖质一次络合成易溶于水的腐殖质钠盐,从而比较完全地将腐殖质提取出来,再用盐酸溶液将腐殖酸沉降出来,采用碱溶酸析法提取的腐殖酸有机质含量较高;样品分子中芳香环和脂肪链上的羧基以及羟基中存在可离解的氢离子,使得腐殖质有酸度和交换容量,从而使其与许多有机物、无机物有发生作用的潜在能力。

产率的计算腐殖酸在强酸性溶液中可用重铬酸钾将其中的碳氧化成二氧化碳。根据重铬酸钾的消耗量和腐殖酸的含碳比,可计算出腐殖酸的产率。该方法的优点是腐殖酸提取量较大,不足之处是重铬酸钾有毒,操作时有危险,而且步骤繁琐、复杂。

三、腐植酸在水处理中的的应用

1 处理重金属离子废水

重金属离子废水是一种对生态环境危害极大的工业废水,重金属离子进入环境后参与食物链直接威胁人体健康,带来严重后果。目前对含重金属离子Pb2+、Cu2+、Cr3+、Cd2+等的废水处理方法主要分为两类:一类是将溶液中的金属离子转变为不溶性物质,如化学沉淀法、电解还原法[7]等;另一类是不改变金属离子化学形态条件下的缩合分离,如离子交换法和交换纤维法[8,9]等。化

2

学沉淀法通常是向废水中加入化学药剂,使重金属离子生成不溶的或难溶的化合物沉淀析出,但此法所用沉淀剂价格较贵,处理中易排出有害气体,反应后残留物的去除还存在一定困难;电解还原法是通过电解作用使重金属离子在电极上析出,此法操作简便,不必消耗化学药剂,但电和金属电极消耗大,而且在处理过程中产生大量的污泥还需要进一步的处理;离子交换法处理效果好,但处理废水成本较高。交换纤维是一种新型的交换材料,其特点是比颗粒状吸附剂交换速度快,多用于各种无机离子的分离、提取(如重金属、贵金属等),但用于处理废水成本较高。而泥炭价格低,其中含有腐殖酸及羟基、羧基、醌基等活性基团,可与水中重金属发生离子交换、络合反应及表面吸附作用[10],对重金属离子具有很好的去除效果,去除率均在97%以上,而且具有较强的抗Ca2+、Mg2+干扰能力。吸附重金属离子后,经过解析脱附再生处理可循环利用。王兰等利用大同风化煤粉中的腐殖酸处理天津某厂含镉电镀废水,使处理前含镉量为92.5 mg/L的水,处理后镉含量降为0.1 mg/L,去除率为99.8%,达到国家规定的排放标准。王兰等还利用吉林黄泥河泥炭(腐殖酸含量42.6%,粒径<60目)对长春某厂的电镀含铬废水进行吸附实验,常温下间歇搅拌,吸附5 h后,铬的去除率达96.6%以上。

2处理染色废水

染料废水在处理中脱色是一个难题。利用泥炭腐殖酸作为阳离子染料脱色剂用于处理阳离子印染废水,无论色度有多高,通过泥炭脱色剂滤层,都可达到无色透明,经脱色处理后的污水可循环利用。泥炭吸附剂也可以把染色废水中毒性较大的阳离子缓染剂(1227)和柔剂VS等去除97%以上。陈仙利用腐殖酸钠对印染废水进行处理研究,实验结果表明,对染色污染物的去除率很高,而且工艺成本较低,具有较高的净化效果。

3 用于阻垢缓蚀剂

腐殖酸主要是一些天然的芳香族羟基羧酸,相对分子质量大,具有离子交换、吸附络合等性质及良好的渗透性与分散性,且能有效地分散金属氧化物,在金属表面形成化学性质稳定的保护膜,表现出良好的阻垢、除垢和缓蚀性。邱广明[11]等利用腐殖酸钠和含磺酸基的共聚物为原料制得HA/P共混物对水中CaCO3、Ca3(PO4)2的阻垢率、Fe2O3的分散性以及缓蚀性进行研究发现,此共混物具有很高的阻垢、分散和缓蚀性能,避免了由于缺少磷系水处理剂而带来的不利影响,具有很高的实际应用价值。

4用于处理其他工业废水

用含77.22%游离腐殖酸的Kapucin制剂进行污水脱酚试验,在向污水中加入此种制剂时,腐殖酸变成腐殖酸盐,可以吸附污水中的酚。被酚饱和的腐殖酸盐以沉淀物形式从污水中分离出来。日本进行的研究是将2~3 mm的SiO2用酚醛树脂涂覆后再涂上腐殖酸制成吸油剂,用于处理含油废水,去油效果非常理想。按5:100比例将含有腐殖酸和微生物的土壤丸粒投入屠宰厂废水中(含BOD14300 mg/L、固体悬浮物18900 mg/L及大肠杆菌24000 mg/L),在3个曝气池中连续反应,最后生成一种不含大肠杆菌、BOD和悬浮固体极低(分别为65和19 mg/L)的澄清液。

3

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4