数列不等式证明技巧 遂宁市第七中学
例1.已知an?1?1?郑廷楷
211,a1?,求证(-1)a1 +(-1)2a2+…+(-1)nan<1 an7证明:先证0?a2n?1?2,a2n?2(*)
1125<2,a2??2 711∴当n=1时(*)式成立
当n=1时∵0 a2n?12(a2n?2)(a2n?1) a2n(a2n?2)3a2n?1??423?4a2n?12554注意a2?,b1?a2?a1? 1177bbb54bn?b1?2?3??n??(2?3)n?1 b1b2bn?177bn?12(a2n?1)?=bn1a2n(a2n?2)2?2?2-3 77[1?(2?3)]因此当n为偶数时:(-1)a1 +(-1)2a2+…+(-1)nan<1成立 当n为偶奇数时多了个负加数因此原式也成立 故原命题总成立。 例2.数列{an}中,an?1?1?a,求证:对于一切正整数n都有an?1 anb1?b2?b3???bn?54?4(3?1)<1 11 1?a211?a1?a3证明:a1?1?a?,a2??a? ?a?221?aa11?a1?a1?an?111?a21?a4,猜出:an?(*) a3??a??a?1?ana21?a31?a3下面用数数归纳法证明(*) 当n=1时(*)显然成立 1?ak?1假设当n=k时(*)成立,即ak? 1?ak11?ak1?ak?2则ak?1??a? ?a?ak1?ak?11?ak?1即当n=k+1时(*)也成立 1?an?1故当n?N?时an? 成立 1?an1?an?11?an?1?1?anan(1?a)an?1??1???0,?an?1 nnn1?a1?a1?a 例3.证明: a?1,n?2,且n?N?,求证an?11?n(a?) naa1n1a(a2n?1)a(1?a2n)a?n2证明:(a?a3???a2n?1) ?n?n21a(a?1)a(1?a)aa?aan?211?nn(a?a3???a2n?1)n=nn(an1)n?n aa11111?0,于是an?n?n(a?) aaa1例4.数列bn?3n?1,而数列an=loga(1?) (a大于1),Sn是数列an前n项之和, bnlogabn?1求证:Sn? 3113n)?loga证明:an?loga(1?)?loga(1? bn3n?13n?1363nSn?a1?a2???an=loga?loga???loga 253n?1363n) =loga(????253n?1由假分数的性质得 因a?1,故a? 363n473n?1?????(1) ????253n?1363n363n583n?2?????(2) ????253n?1473n?1363n363n又????=????(3) 253n?1253n?1(1)×(2)×(3)得 363n33?4?5???(3n?2)(3n?1)(3n?2)?(???? )?2?3?4???(3n?1)2?3253n?1363n3(3n?1)(3n?2)当n≥2 时(????>3n+2=bn?1 )?253n?12?3因为a?1 logabn?1363n故有3loga(???? )?logabn?1,即Sn?3253n?13loga5当n=1 时S1?loga?,综上当n≥2 时原式成立。 32例5.已知y?f(x),f(?1)?1,对任意实数x,y满足:f(x?y)?f(x)?f(y)?3 (1)当n?N时求f(n)的表达式; (2)若b1?1,bn?1?bn?f(n?1),求bn; 1117(3)求证:当n?N?时????? b1b2bn4解:(1)令x?y?0,得f(0)?3 令x?1,y??1得f(0)?f(1)?f(?1)?3,f(1)?5 故f(n?1)?f(n)?f(1)?3?f(n)?2,f(n?1)?f(n)?2 当n?N时f(n)?f(?1)?[f(0)?f(?1)]?[f(1)?f(0)]?[f(2)?f(1)] ???[f(n)?f(n?1)]=1?2(n?1)?2n?3 (2)bn?1?bn?f(n?1))?bn?2n?1 bn?1?bn?2n?1 故bn?b1?(b2?b1)?(b2?b1)???(bn?bn?1) =1?3?5???(2n?1)?n2 1117????? b1b2bn41111111?1????????当n?3时???? b1b2bn43?34?4n?n15115117???????=?(?)? (n?1)n42n42?33?44(3)证明:当n?1或2时易证 例6.已知函数f(x)??x3?ax在(0,1)上是增函数。 (1)求实数a的取值集合A (2)当a中取A中最小值时,定义数列{an}满足:2an?1?f(an)且a1?b?(0,1),b为常数,试比较an?1与an的大小 (3)在(2)的条件下,问是否存在正实数c使0?an?c?1对一切n?N?恒成立? 解:(1)f?(x)??3x2?a?0 对x?(0,1)恒成立 故f(1)??3?a?0,即a?3,集合A=[3,??) (2) 集合A=[3,??)中的最小值是3 当a?3时,f(x)??x3?3x 1133an?1?f(an)??an?an 2221311an?1?an??an?an??an(an?1)(an?1)① 222下面用数学归纳法先证明an?(0,1) a1?b?(0,1),假设ak?(0,1) 13312ak?1??ak?ak??ak(ak?3)?0 222133131ak?1?1??ak?ak?1??(ak?3ak?2)??(ak?1)2(ak?2)?0 2222于是ak?1?(0,1) 由数学归纳法原理得当n?N?时an?(0,1)总成立 1于是?an(an?1)(an?1)?0 2由①得,an?1?an (3) 由(2)知an?(0,1),{an}递增 于是a1?an?1,即b?an?1,因此取0?c?b?1,0?b?c?an?1?c?1 对对一切n?N?恒成立。 12例7.已知数列?an?满足an?(an?1?2)an?2an?1?1?0,且a1??, 2求证:(1)?1?an?0(2)a2n?a2n?1(3){a2n?1}是递增数列. 22证明:(1)an?(an?1?2)an?2an?1?1?0,(an?2)an?1??(an?1) (a1?1)21由于a1???(?1,0),于是a2???0, 2a1?2(a1?1)2a1?2?(a1?1)21?a1(a1?1)?0,a2??1 =a2?1?1??a1?2a1?2a1?2假设ak?(?1,0),用上面的方法可得ak?1?(?1,0) 由数学归纳法原理得an?(?1,0) (2)an?1(an?1)2(an?2?1)2(an?2)2?2(an?2)?1 ??????an?2an?2an?211)?2,an?1?2??(an?2?)?4 an?2an?213,bn?1?4?(bn?) bn2=?(an?2?设bn?an?2,于是b1?a1?2?由(1)知1?bn?2,函数f(x)?x?b2?4?(b1?1在x?(1,2)上是递增 x111)?, b261111?b1?,4?(b2?)?4?(b1?), 由b2?b1得,b2?b1b1b2b21111故b3?b2得,b3??b2?,4?(b3?)?4?(b2?) b3b3b2b2于是b4?b3,假设b2k?b2k?1,用上面的方法可得b2k?2?b2k?1 由数学归纳法原理得b2n?b2n?1恒成立,故a2n?a2n?1恒成立 (3)b2n?1?b2n?1?4?(b2n?1b2n?1111?b2n?1 )?b2n?1?4?[4?(b2n?1?)]?b2nb2n?1b2n=?1?0(由(2)) b2n所以b2n?1?b2n?1?0,{b2n?1}递增,于是{a2n?1}递增 1例8.用数学归纳法证明(1?)n?n(n?3,n?N?) n证明:(1)当n=3时成立,(自已验证) 1(2)假设当n?k(k?3),即(1?)k?k k1k?1111k当n?k?1时(1?)?(1?)k(1?),?k(1?)?k??k?1 k?1kk?1k?1k?1因此当当n?k?1时时原式也成立 综上,当n?3,n?N?时,原式总成立 例9.已知a,b,c三个正数成等差数列,公差不为零,n?3,n?N? 用数学归纳法证明:an?cn?2bn 证明:因为a,b,c三个正数成等差数列,所以a?c?2b