2014年安徽省中考数学试题及参考答案
一、选择题(本大题共10小题,每小题4分,满分40分) 1.(﹣2)×3的结果是( )
A.﹣5 B.1 C.﹣6 D.6 2.x2?x3=( )
A.x5 B.x6 C.x8 D.x9
3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )
A. B. C. D.
4.下列四个多项式中,能因式分解的是( )
A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y
5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为( )
棉花纤维长度x 频数 1 0≤x<8 2 8≤x<16 8 16≤x<24 6 24≤x<32 3 32≤x<40 A.0.8 B.0.7 C.0.4 D.0.2 6.设n为正整数,且n<65<n+1,则n的值为( )
A.5 B.6 C.7 D.8
7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( ) A.﹣6 B.6 C.﹣2或6 D.﹣2或30 8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )
A.
53 B.
52 C.4 D.5
9.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )
1
A. B. C.
2 D.
,若直线l满足:
10.如图,正方形ABCD的对角线BD长为2
①点D到直线l的距离为3;
②A、C两点到直线l的距离相等. 则符合题意的直线l的条数为( ) A.1 B.2 C.3 D.4
二、填空题(本大题共4小题,每小题5分,满分20分)
11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 .
12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= . 13.方程
4x?12x?2?3的解是
x= .
14.如图,在?ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上) ①∠DCF=
12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:25﹣|﹣3|﹣(﹣π)0+2013.
16.(8分)观察下列关于自然数的等式: 32﹣4×12=5 ① 52﹣4×22=9 ② 72﹣4×32=13 ③
2
…
根据上述规律解决下列问题: (1)完成第四个等式:92﹣4× 2= ; (2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性. 四、(本大题共2小题,每小题8分,满分16分) 17.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1; (2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
18.(8分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).
五、(本大题共2小题,每小题10分,满分20分) 19.(10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.
20.(10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
3