第十章 对流换热
英文习题
1. Finding convection coefficient from drag measurement
A 2 m×3 m flat plate is suspended in a room, and is subjected to air flow parallel to its surfaces along its 3-m-long side. The free stream temperature and velocity of air are 20℃ and 7m/s. The total drag force acting on the plate is measured to be 0.86 N. Determine the average convection heat transfer coefficient for the plate (Fig. 10-1).
FIGURE 10-12. Cooling of a hot block by forced air at high elevation
The local atmospheric pressure in Denver, Colorado (elevation 1610 m), is 83.4 kPa. Air at this pressure and 20℃ flows with a velocity of 8 m/s over a 1.5 m×6 m flat plate whose temperature is 140℃ (Fig. 10-2). Determine the rate of heat transfer from the plate if the air flows parallel to the (a) 6-m-long side and (b) the 1.5-m side.
FIGURE 10-23. Cooling of a steel ball by forced air
A 25-cm-diameter stainless steel ball (ρ=8055 kg/m, and Cp=480 J/kg.℃) is removed from the oven at a uniform temperature of 300℃. The ball is then subjected to the flow of air at 1 atm pressure and 25℃ with a velocity of 3 m/s. The surface temperature of the ball eventually drops to 200℃. Determine the average convection heat transfer coefficient during this cooling process and estimate how long the process will take.
3
4. Flow of oil in a pipeline through the icy waters of a lake
Consider the flow of oil at 20℃ in a 30-cm-diameter pipeline at an average velocity of 2 m/s (Fig.10-3). A 200-m-long section of the pipeline passes through icy waters of a lake at 0℃. Measurements indicate that the surface temperature of the pipe is very nearly 0℃. disregarding thermal resistance of the pipe material, determine (a) the temperature of the oil when the