½âÎö£º½â£ºÈ¡B1C1ÖеãG£¬Á¬½áFG£¬BG£¬
F·Ö±ðÊÇÀâA1D1¡¢¡ßÔÚÀⳤΪ2µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãE¡¢
A1B1µÄÖе㣬
¡àAE¡ÎBG£¬AC¡ÎFG£¬
¡ßAE¡ÉAC=A£¬BG¡ÉFG=G£¬ ¡àÆ½ÃæFGB¡ÎÆ½ÃæAEC£¬
¡ßPÊDzàÃæÕý·½ÐÎBCC1B1ÄÚÒ»µã£¨º¬±ß½ç£©£¬FP¡ÎÆ½ÃæAFC£¬ ¡àµãPÔÚÏß¶ÎBGÉÏÔ˶¯£¬ ÔÚµÈÑü¡÷A1BGÖУ¬A1G=BG=
=
£¬A1B=
=2
£¬
×÷A1H¡ÍBGÓÚH£¬ÓɵÈÃæ»ý·¨½âµÃ£º A1H=
=
=
£¬
¡àA1H¡ÜA1P¡ÜA1B£¬
¡àÏß¶ÎA1P³¤¶ÈµÄȡֵ·¶Î§ÊÇ[¹Ê´ð°¸Îª£º[
£¬2
]£®
£¬2
]£®
È¡B1C1ÖеãG£¬Á¬½áFG£¬BG£¬ÍƵ¼³öÆ½ÃæFGB¡ÎÆ½ÃæAEC£¬´Ó¶øµãPÔÚÏß¶ÎBGÉÏÔ˶¯£¬×÷A1H¡ÍBGÓÚH£¬ÓÉA1H¡ÜA1P¡ÜA1B£¬ÄÜÇó³öÏß¶ÎA1P³¤¶ÈµÄȡֵ·¶Î§£®
±¾Ì⿼²éÏ߶㤵Äȡֵ·¶Î§µÄÇ󷨣¬¿¼²é¿Õ¼äÖÐÏßÏß¡¢ÏßÃæ¡¢ÃæÃæ¼äµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÊÇÖеµÌ⣮
17.´ð°¸£º½â£º£¨1£©ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃS¡÷ABC=acsinB=
¡à2csinBsinA=a£¬
ÓÉÕýÏÒ¶¨Àí¿ÉµÃ2sinCsinBsinA=sinA£¬ ¡ßsinA¡Ù0£¬ ¡àsinBsinC=£»
£¨2£©¡ß10cosBcosC=-1£¬ ¡àcosBcosC=-£¬
¡àcos£¨B+C£©=cosBcosC-sinBsinC=-£¬ ¡àcosA=£¬sinA=£¬ ¡ßÔòÓÉbcsinA=
£¬¿ÉµÃ£ºbc=£¬ÓÉb2+c2-a2=2bccosA£¬
£¬
¿ÉµÃ£ºb2+c2=£¬
¡à£¨b+c£©2=+=7£¬¿ÉµÃ£ºb+c=¡àÈý½ÇÐεÄÖܳ¤a+b+c=£¨Êµ¼ÊÉϿɽâµÃb=
+
£®
·ûºÏÈý±ß¹ØÏµ£©£® £¬¾¼ìÑé·ûºÏÌâÒ⣬
£¬c=
½âÎö£º£¨1£©¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½ºÍÕýÏÒ¶¨Àí¿ÉµÃ´ð°¸£¬
£¨2£©¸ù¾ÝÁ½½ÇÓàÏÒ¹«Ê½¿ÉµÃcosA£¬¼´¿ÉÇó³ösinA£¬ÔÙ¸ù¾ÝÕýÏÒ¶¨Àí¿ÉµÃbc£¬¸ù¾ÝÓàÏÒ
µÚ11Ò³£¬¹²16Ò³
¶¨Àí¼´¿ÉÇó³öb+c£¬ÎÊÌâµÃÒÔ½â¾ö£®
±¾Ì⿼²éÁËÈý½ÇÐεÄÃæ»ý¹«Ê½£¬Á½½ÇºÍµÄÓàÏÒ¹«Ê½£¬ÓÕµ¼¹«Ê½£¬ÕýÏÒ¶¨Àí£¬ÓàÏÒ¶¨ÀíÔÚ½âÈý½ÇÐÎÖеÄ×ÛºÏÓ¦Ó㬿¼²éÁËѧÉúµÄÔËËãÄÜÁ¦£¬¿¼²éÁËת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮ 18.´ð°¸£º£¨1£©Ö¤Ã÷£ºÈ¡ABµÄÖеãO£¬Á¬½ÓOD£¬OB1£¬ ¡ß¡ÏB1BA=60¡ã£¬B1B=2£¬OB=AB=1£¬
=£¬ ¡àOB1=
¡àOB2+OB12=BB12£¬¹ÊAB¡ÍOB1£¬ ÓÖAB¡ÍB1D£¬OB1¡ÉB1D=B1£¬ ¡àAB¡ÍÆ½ÃæODB1£¬ ¡àAB¡ÍOD£¬
¡ßO£¬D·Ö±ðÊÇAB£¬BCµÄÖе㣬¡àOD¡ÎAC£¬ ¡àAB¡ÍAC£®
£¨2£©½â£º¡ßËıßÐÎACC1A1ÊÇÕý·½ÐΣ¬¡àAC¡ÍAA1£¬ ÓÖAC¡ÍAB£¬AB¡ÉAA1=A£¬ ¡àAC¡ÍÆ½ÃæABB1A1£¬
ÔÚÆ½ÃæABB1A1ÄÚ×÷Ö±ÏßABµÄ´¹ÏßAE£¬ÒÔAΪԵ㣬ÒÔAB£¬AC£¬AEΪËùÔÚÖ±ÏßÎª×ø±êÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬
ÔòA£¨0£¬0£¬0£©£¬D£¨1£¬1£¬0£©£¬C1£¨-1£¬2£¬£©£¬B1£¨1£¬0£¬£©£¬ ¡à=£¨1£¬1£¬0£©£¬
=£¨-1£¬2£¬
£©£¬
=£¨0£¬1£¬-£©£¬
ÉèÆ½ÃæC1ADµÄ·¨ÏòÁ¿Îª=£¨x£¬y£¬z£©£¬Ôò£¬¼´£¬
Áîx=1¿ÉµÃ£º=£¨1£¬-1£¬£©£¬
¡àcos£¼£¬£¾===-£®
¡àÖ±ÏßB1DÓëÆ½ÃæC1ADËù³É½ÇµÄÕýÏÒֵΪ|cos£¼£¬£¾|=£®
½âÎö£º£¨1£©È¡ABµÄÖеãO£¬Á¬½ÓOD£¬OB1£¬Ö¤Ã÷AB¡ÍÆ½ÃæODB1µÃ³öAB¡ÍOD£¬ÔٵóöAB¡ÍAC£»
£¨2£©½¨Á¢¿Õ¼ä×ø±êϵ£¬Çó³öÆ½ÃæC1ADµÄ·¨ÏòÁ¿£¬¼ÆËãcos£¼£¬
£¾¼´¿ÉµÃ³ö´ð°¸£®
±¾Ì⿼²éÁËÏßÃæ´¹Ö±µÄÅж¨ÓëÐÔÖÊ£¬¿¼²é¿Õ¼äÏòÁ¿Óë¿Õ¼ä½ÇµÄ¼ÆË㣬ÊôÓÚÖеµÌ⣮
19.´ð°¸£º½â£º£¨1£©ÓÉÌâÒâ¿ÉÖªc=1£¬F1£¨-1£¬0£©£¬F2£¨1£¬0£©£® ÓÖ2a=|TF1|+|TF2|=¡àa=2£¬¡àb=
=
£¬
+
=+=4£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º+=1£®
£¨2£©Èô´æÔÚµãP£¨m£¬0£©£¬Ê¹µÃÒÔPG£¬PHΪÁÚ±ßµÄÆ½ÐÐËıßÐÎÊÇÁâÐΣ¬ ÔòPΪÏß¶ÎGHµÄÖд¹ÏßÓëxÖáµÄ½»µã£®
ÉèÖ±Ïßl1µÄ·½³ÌΪ£ºy=kx+2£¬G£¨x1£¬y1£©£¬H£¨x2£¬y2£©£¬
µÚ12Ò³£¬¹²16Ò³
ÁªÁ¢·½³Ì×飬ÏûÔªµÃ£º£¨3+4k2£©x2+16kx+4=0£¬
¡÷=256k2-16£¨3+4k2£©£¾0£¬ÓÖk£¾0£¬¹Êk£¾£® ÓɸùÓëϵÊýµÄ¹ØÏµ¿ÉµÃx1+x2=-Ôòx0=-£¬y0=kx0+2=
£¬
£©+£®
¼´k=ʱȡµÈºÅ£¬
£¬
£¬ÉèGHµÄÖеãΪ£¨x0£¬y0£©£¬
¡àÏß¶ÎGHµÄÖд¹Ïß·½³ÌΪ£ºy=-£¨x+Áîy=0¿ÉµÃx=¡ßk£¾£¬¹Ê¡àm¡Ý-¡Ý2=-£¬¼´m=-=4
£¬µ±ÇÒ½öµ±
=-£¬ÇÒm£¼0£®
¡àmµÄȡֵ·¶Î§ÊÇ[-£¬0£©£®
½âÎö£º£¨1£©¸ù¾ÝÍÖÔ²¶¨Ò弯Ëãa£¬ÔÙ¸ù¾Ýa£¬b£¬cµÄ¹ØÏµ¼ÆËãb¼´¿ÉµÃ³öÍÖÔ²·½³Ì£» £¨2£©ÉèÖ±Ïßl1·½³ÌΪy=kx+2£¬ÓëÍÖÔ²·½³ÌÁªÁ¢·½³Ì×飬Çó³ökµÄ·¶Î§£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØÏµÇó³öGHµÄÖеã×ø±ê£¬Çó³öGHµÄÖд¹ÏßÓëxÖáµÄ½»µãºá£¬µÃ³öm¹ØÓÚkµÄº¯Êý£¬ÀûÓûù±¾²»µÈʽµÃ³ömµÄ·¶Î§£®
±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
20.´ð°¸£º½â£º£¨1£©¾Í³¼Æ¿ÉÖª£¬Ñù±¾40ÈËÖУ¬Ñ¡ÐÞ»¯Ñ§¡¢ÉúÎïµÄÈËÊý·Ö±ðΪ24£¬11£¬Ôò¿É¹À¼Æ¸ßÒ»Äê¼¶Ñ¡ÐÞÏàÓ¦¿ÆÄ¿µÄÈËÊý·Ö±ðΪ720£¬330£®¸ù¾Ýÿ¸öÑ¡ÐÞ°à×î¶à±àÅÅ50ÈË£¬ÇÒ¾¡Á¿Âú¶î±à°à£¬µÃ¶ÔÓ¦¿ªÉèÑ¡ÐÞ°àµÄÊýÄ¿·Ö±ðΪ15£¬7£®ÏÖÓл¯Ñ§¡¢ÉúÎï¿ÆÄ¿½Ìʦÿ¿Æ¸÷8ÈË£¬¸ù¾Ýÿλ½Ìʦִ½Ì2¸öÑ¡Ðް࣬µ±ÇÒ½öµ±Ò»ÃÅ¿ÆÄ¿µÄÑ¡¿Î°à¼¶×ÜÊýÎªÆæÊýʱ£¬ÔÊÐíÕâÃÅ¿ÆÄ¿µÄһλ½Ìʦִ½ÌÒ»¸ö°àµÄÌõ¼þ£¬ÖªÉúÎï¿ÆÄ¿ÐèÒª¼õÉÙ4Ãû½Ìʦ£¬»¯Ñ§¿ÆÄ¿²»ÐèÒªµ÷Õû£®
£¨2£©¸ù¾Ý±í¸ñÖеÄÊý¾Ý½øÐÐͳ¼Æºó£¬ÖÆ×÷ÁÐÁª±íÈçÏ£º
Ñ¡»¯Ñ§ ²»Ñ¡»¯Ñ§ ºÏ¼Æ ÔòK2=
Ñ¡ÎïÀí 19 6 25 ¡Ö7.111£¾6.635£¬
²»Ñ¡ÎïÀí 5 10 15 ºÏ¼Æ 24 16 40 ¡àÓÐ99%µÄ°ÑÎÕÅжÏѧÉú¡±Ñ¡Ôñ»¯Ñ§¿ÆÄ¿¡±Óë¡°Ñ¡ÔñÎïÀí¿ÆÄ¿¡±Óйأ®
£¨3£©¾Í³¼Æ£¬Ñù±¾ÖÐÑ¡ÐÞÁËÀúÊ·¿ÆÄ¿ÇÒÔÚÕþÖκ͵ØÀí2ÃÅÖÐÖÁÉÙÑ¡ÐÞÁËÒ»ÃŵÄÈËÊýΪ12£¬ÆµÂÊΪp==0.3£®
ÓÃÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÔòX¡«B£¨3£¬0.3£©£¬·Ö²¼ÁÐÈçÏ£º X P 0 0.343 1 0.441 2 0.189 3 0.027 0.3=0.9£® ÊýѧÆÚÍûΪE£¨X£©=np=3¡Á
µÚ13Ò³£¬¹²16Ò³
½âÎö£º£¨1£©¾Í³¼Æ¿ÉÖª£¬Ñù±¾40ÈËÖУ¬Ñ¡ÐÞ»¯Ñ§¡¢ÉúÎïµÄÈËÊý·Ö±ðΪ24£¬11£¬Ôò¿É¹À¼Æ¸ßÒ»Äê¼¶Ñ¡ÐÞÏàÓ¦¿ÆÄ¿µÄÈËÊý·Ö±ðΪ720£¬330£®¸ù¾Ýÿ¸öÑ¡ÐÞ°à×î¶à±àÅÅ50ÈË£¬ÇÒ¾¡Á¿Âú¶î±à°à£¬µÃ¶ÔÓ¦¿ªÉèÑ¡ÐÞ°àµÄÊýÄ¿·Ö±ðΪ15£¬7£®ÏÖÓл¯Ñ§¡¢ÉúÎï¿ÆÄ¿½Ìʦÿ¿Æ¸÷8ÈË£¬¸ù¾Ýÿλ½Ìʦִ½Ì2¸öÑ¡Ðް࣬µ±ÇÒ½öµ±Ò»ÃÅ¿ÆÄ¿µÄÑ¡¿Î°à¼¶×ÜÊýÎªÆæÊýʱ£¬ÔÊÐíÕâÃÅ¿ÆÄ¿µÄһλ½Ìʦִ½ÌÒ»¸ö°àµÄÌõ¼þ£¬ÖªÉúÎï¿ÆÄ¿ÐèÒª¼õÉÙ4Ãû½Ìʦ£¬»¯Ñ§¿ÆÄ¿²»ÐèÒªµ÷Õû£®
£¨2£©¸ù¾ÝÁÐÁª±í¼ÆËã¹Û²âÖµ£¬¸ù¾ÝÁÙ½çÖµ±í¿ÉµÃ½áÂÛ£®
£¨3£©¾Í³¼Æ£¬Ñù±¾ÖÐÑ¡ÐÞÁËÀúÊ·¿ÆÄ¿ÇÒÔÚÕþÖκ͵ØÀí2ÃÅÖÐÖÁÉÙÑ¡ÐÞÁËÒ»ÃŵÄÈËÊýΪ12£¬ÆµÂÊΪp==0.3£®ÓÃÆµÂʹÀ¼Æ¸ÅÂÊ£¬ÔòX¡«B£¨3£¬0.3£©£¬¸ù¾Ý¶þÏî·Ö²¼¸ÅÂʹ«Ê½¿ÉµÃ·Ö²¼ÁкÍÊýѧÆÚÍû£®
±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î£¬ÊôÖеµÌ⣮
21.´ð°¸£º½â£º£¨1£©º¯Êýf£¨x£©=ln£¨x+1£©+
ÓÉÌõ¼þµÃº¯ÊýµÄ¶¨ÒåÓò£º{x|x£¾-1}£¬ µ±a=-1ʱ£¬f£¨x£©=ln£¨x+1£©-x2£¬ ËùÒÔ£ºf¡ä£¨x£©=f¡ä£¨x£©=0ʱ£¬x=µ±x¡Ê£¨-1£¬
-x=£¬
£¬
£©Ê±£¬f¡ä£¨x£©£¾0£¬µ±x¡Ê£¨£¬+¡Þ£©Ê±£¬f£¨x£©£¼0£¬
£¬+¡Þ£©£»
Ôòº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£º£¨-1£¬£¨2£©ÓÉÌõ¼þµÃ£ºx£¾-1£¬f¡ä£¨x£©=
£©£¬µ¥µ÷µÝ¼õÇø¼äΪ£º£¨
£¬
+ax=
ÓÉÌõ¼þµÃ¦Õ£¨x£©=ax2+ax+1=0ÓÐÁ½¸ù£ºx1£¬x2£¬Âú×ã-1£¼x1£¼x2£¬ ¡à¡÷£¾0£¬¿ÉµÃ£ºa£¼0»òa£¾4£» ÓÉa?¦Õ£¨-1£©£¾0£¬¿ÉµÃ£ºa£¾0£® ¡àa£¾4£¬
¡ßº¯Êý¦Õ£¨x£©µÄ¶Ô³ÆÖáΪx=-£¬-1£¼x1£¼x2£¬ ËùÒÔ£ºx2¡Ê£¨-£¬0£©£» ¡ßax22+ax2+1=0£¬¿ÉµÃ£ºa=-£¬
£¬
¡àf£¨x2£©=ln£¨x2+1£©+x22=ln£¨x2+1£©-¡ßx1+x2=-1£¬Ôò£ºx1=-x2-1£¬ ËùÒÔ£º
?f¡ä£¨x1+1£©=
f¡ä£¨-x2£©¨T+
=£» £¬
ËùÒÔ£ºm=ln£¨x2+1£©-Áîh£¨x£©=lnx-Ôòh¡ä£¨x£©=-
=ln£¨x2+1£©-
£¬x=x2+1¡Ê£¨£¬1£©£¬ =
£¬
µÚ14Ò³£¬¹²16Ò³
ÒòΪ£ºh¡ä£¨x£©=0ʱ£¬x=£¬ËùÒÔ£ºh£¨x£©ÔÚ£¨£¬£©ÉÏÊǵ¥µ÷µÝ¼õ£¬ÔÚ£¨£¬1£©Éϵ¥µ÷µÝÔö£¬
ÒòΪ£ºh£¨£©=1-ln2£¬h£¨1£©=£¬h£¨£©=+ln£¬h£¨£©£¾h£¨1£©£¬ ËùÒÔh£¨x£©¡Ê[+ln£¬1-ln2£©£» ¼´mµÄȡֵ·¶Î§ÊÇ£º[+ln£¬1-ln2£©£» x=£¬ËùÒÔÓÐx=x2+1=£¬ Ôòx2=-£¬a=-=£»
ËùÒÔµ±mÈ¡µ½×îСֵʱËù¶ÔÓ¦µÄaµÄֵΪ£»
¹Ê´ð°¸Îª£º£¨1£©µ±a=-1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ£º£¨-1£¬¼äΪ£º£¨
£©£¬µ¥µ÷µÝ¼õÇø
£¬+¡Þ£©£»£¨2£©mµÄȡֵ·¶Î§ÊÇ£º[+ln£¬1-ln2£©£»µ±mÈ¡µ½×îСֵʱËù¶Ô
Ó¦µÄaµÄֵΪ£»
½âÎö£º£¨1£©µ±a=-1ʱ£¬Çóf£¨x£©µÄµ¼Êý¿ÉµÃº¯ÊýµÄµ¥µ÷Çø¼ä£» fx£©x2£¬=£¨2£©Èôº¯Êý£¨ÓÐÁ½¸ö¼«Öµµãx1£¬ÇÒx1£¼x2£¬ÀûÓõ¼º¯Êýf¡ä£¨x£©¿ÉµÃaµÄ·¶Î§£¬ÔÙ±í´ïm=f£¨x2£©+
+ax=
£¬
£¬¹¹Ôìк¯Êý¿ÉÇómµÄȡֵ·¶Î§£¬´Ó
¶ø¿ÉÇómÈ¡µ½×îСֵʱËù¶ÔÓ¦µÄaµÄÖµ£®
¿¼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄ¼«ÖµºÍµ¥µ÷Çø¼äÎÊÌ⣬ÌåÏÖÁËת»¯µÄ˼Ïë·½·¨£¬ÊôÓÚÄÑÌ⣮
22.´ð°¸£º½â£º£¨1£©ÓÉ
Óɽ«
£¬ÏûÈ¥¦ÁµÃÇúÏßCµÄÆÕͨ·½³ÌÊÇ£º£¬
£¬µÃ¦Ñsin¦È-¦Ñcos¦È=2£¬ ´úÈëÉÏʽ£¬»¯¼òµÃy=x+2£¬
¡àÖ±ÏßlµÄÇãб½ÇΪ£»
£¨2£©ÔÚÇúÏßCÉÏÈÎȡһµãM£¨£¬sin¦Á£©£¬ Ö±ÏßlÓëyÖá½»µãQµÄ×ø±êΪ£¨0£¬2£©£¬ Ôò|MQ|=µ±ÇÒ½öµ±sin
½âÎö£º£¨1£©ÓÉ
£¬Ö±½ÓÏûÈ¥¦Á¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£¬°Ñ
×ó
=
ʱ£¬|MQ|È¡×î´óÖµ
£®
£®
±ßÕ¹¿ªÁ½½Ç²îµÄÕýÏÒ£¬´úÈ룬¿ÉµÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóµÃÇãб½Ç£»
µÚ15Ò³£¬¹²16Ò³