车辆工程汽车离合器的外文文献翻译大学论文

湖 北 文 理 学 院

毕业设计(论文)英文翻译

题 目 专 业 班 级 姓 名 学 号 指导教师职 称 有限元热分析的陶瓷离合器

车辆工程 Xxx Xxxx 2010138xx

Xxx 副教授

2014年2月25日

湖北文理学院 毕业设计(论文)报告纸

Fethermal analysis of a ceramic clutch

1. Introduction

Abrasive dry running vehicle clutches are force closure couplings. Torque and speed transmission are ensured by the frictional force generated between two pressed surfaces. Reasons for the application of ceramic as a friction medium include good heat and wear resistance properties, which provide the opportunity to drive higher pressures, and a low density. Thus, an increasing power density is enabled with a parallel minimization of construction space.

Measurements with a first prototype of a clutch disk using ceramic facings were performed at Karlsruhe University in a laboratory specialized in passenger car drive system testing. In the course of analysis the finite element (FE) model was to be constructed with the knowledge of measurement data and measurement conditions. Calculations were intended to determine the temperature distribution of the clutch disk and its environment at each moment in time corresponding to measurements. It is essential to be familiar with the temperature range in order to examine the wear characteristics of the system. Thus, important information is derived from measurement data. In critical load cases, the highest expected temperatures must be forecast in space and time in order to protect measuring instruments close to the location of heat generation.

The goal of this study is to analyze and modify the clutch system to provide better operating conditions by improving the heat conduction and convection of the system or to increase the amount of the energy converted into frictional heat. Furthermore, it is desired to find better design solutions for more efficient clutch systems.

Calculations were performed by the Cosmos Design Star software. During model development, great care had to be taken for proper simplification of geometry, the selection of element sizes, and the correct adjustment of time steps due to the substantial hardware requirements for transient calculations. Changes in thermal parameters such as the surface heat convection coefficient and thermal load had to be taken into consideration on an on-going basis in terms of time and location. The two sides of the analyzed test clutch system can only be managed by two independent models linked by heat partition,

- 1 -

湖北文理学院 毕业设计(论文)报告纸

according to the hypothesis that the contact temperature must be identical on both sides while there is proper contact between them and its value must be adjusted by iteration. Calculations revealed that the heat partition changed by cycle and it differed along the inner and outer contact rings. As a result of the different cooling characteristics between the ceramic and steel side, a heat ?ow is launched from the ceramic side to the steel side. This heat flow was also determined by iteration, its value also changes by cycle and differs along the inner and outer contact rings.

2. First prototype of a clutch using engineering ceramics as friction material

The examined clutch disk was developed according to the “specific ceramic” product development process established at the Institute for Product Development (IPEK) at the University of Karlsruhe. This development process already has the possibility for connection to a real transmission shaft; further, it has a cushion spring device for the facings allowing good start behaviour. Abrasive clutches must comply with the following basic requirements:

? high torque transmission according to high friction coefficients,

? high comfort (no vibrations through self-induced chattering), ? homogeneous temperature distribution, ? low wear characteristic.

A critical element of the switch is the abrasive disk.With regard to the design utmost care must be taken to select the right material. A high and constant friction coefficient,,wear resistance and thermal resistance are desired characteristics. The clutch disk has instead of the generally applied ring-shaped abrasive inlet two rows of SSIC (as sintered) ceramic pellets. These pellets are placed on 6 separate segments. The segments are ?xed to the central hub by rivets. Each segment consists of 4 plates, 2 working as facing springs and 2 as carriers.

3. Measurements

Measurements were performed at the department of power train development of the

Institute for Product Development (IPEK) at the Karlsruhe University (TH) Research

- 2 -

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4