优质文档
绝密★启用前
荆、荆、襄、宜四地七校考试联盟
2018届高三2月联考
理科数学试题 命题学校:宜昌一中
本试卷共4页,23题(含选考题)。全卷满分150分。考试用时120分钟。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.若集合M?xx?1?,N?yy?x,x?1,则
2???A.M?N B.M?N C.MN?? D.N?M 12.在复平面内,复数(其中i是虚数单位)对应的点位于
2?iA.第一象限 B.第二象限 C.第三象限 D.第四象限
3.设??R,则“???12??12”是“sin??1” 的 2A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
4.已知??(??,),a?(cos?)cos?,b?(sin?)cos?, 42c?(cos?)sin?,则
A.a?b?c B.a?c?b 优质文档
优质文档
C.b?a?c D.c?a?b 5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为
(参考数据:sin15°≈0.2588,sin7.5°≈0.1305) A.12 B.20 C.24 D.48
?2x?y?2?0,?6.已知实数x,y满足约束条件?x?2y?2?0,若z?x?ay?a?0?的最大值为4,则a? ?x?y?2?0,?A.2
B.3 2 C.3 D.4
*7.已知数列{an},{bn},n?N都是公差为1的等差数列,其首项分别为a1,b1,且a1?b1?5,a1,b1?N*设cn?abn(n?N*),则数列?cn?的前10项和等于
A.55 B.70 C.85
2222D.100
8.若圆O1:x?y?5与圆O2:(x?m)?y?20相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 C.23
A.3 B.4 D.8
9.若函数y?f(x?2)的图象与函数y?log32x?22x?1x?2的图象关于直线y?x对称,则f(x)= C.3
2xA.3 B.3
D.32x?2 10.已知函数f?x??sin?x?3cos?x???0?,若方程f?x???1在?0,??上有且只有四个实数根,则实数?的取值范围为
优质文档
优质文档
A.(136,72] B.(7252,6] C.(25116,2] D.(11372,6] 11.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听
到了一声巨响,正东观测点听到的时间比其它两观测点晚4s.已知各观测点到该中心的距离都是1020m.则该巨响发生在接报中心的( )处.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)
A.西偏北45°方向,距离68010m B.东偏南45°
方向,距离68010m C.西偏北45°方向,距离6805m D.东偏南45°
方向,距离6805m 12.对n?N*,设xn是关于x的方程nx3?2x?n?0的实数根,an?[(n?1)xn],(n?2,3,???)(符号[x]表示不超过x的最大整数).则a2?a3?????a20182017? A.1010 B.1012
C.2018
D.2020
二、填空题:本题共4小题,每小题5分,共20分。
?13.已知函数f(x)??1?2x,x?0?1,则f(f(?1))? .
??x2,x?014.设n?N*,则C1232nn?1n?Cn7?Cn7?????Cn7? .
15.已知平面向量a,b的夹角为 120°,且a?1,b?2.若平面向量m满足m?a?m?b?1,则m? .
16.某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新
工件,并使新工件的一个面落在原工件的一个面内,则此长方体体积的最大值为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,
优质文档