5.如图所示,沿水平面放G一宽50cm的U形光滑金属框架.电路中电阻 R=2.0Ω,其余电阻不计,匀强磁场B=0.8T,方向垂直于框架平面向上,金属棒MN质量为30g,它与框架两边垂直,MN的中点O用水平的绳跨过定滑轮系一个质量为20g的砝码,自静止释放砝码后,电阻R能得到的最大功率为 w.
6.如图所示,正方形金属框ABCD边长L=20cm,质量m=0.1kg,电阻R=0.1 Ω,吊住金属框的细线跨过两定滑轮后,其另一端挂着一个质量为M=0.14kg的重物,重物拉着金属框运动,当金属框的AB边以某一速度进入磁感强
2
度B=0.5T的水平匀强磁场后,即以该速度v做匀速运动,取g= 10m/s,则金属框匀速上升的速度v= m/s,在金属框匀速上升的过程中,重物M通过悬线对金属框做功 J,其中有 J的机械能通过电流做功转化为内能.
7.如图所示,两根固定在水平面上的光滑平行金属导轨MN和PQ,一端接有阻值为R的电阻,处于方向竖直向下的匀强磁场中。在导轨上垂直导轨跨放质量为m的金属直杆,金属杆的电阻为r,金属杆与导轨接触良好、导轨足够长且电阻不计。金属杆在垂直于杆的水平恒力F作用下向右匀速运动时,电阻R上消耗的电功率为P,从某一时刻开始撤去水平恒力F去水平力后:(1)当电阻R上消耗的功率为P/4时,金属杆的加速度大小和方向。(2)电阻R上产生的焦耳热。
8.如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场,磁场的磁感强度大小为B,边长为f的正方形金属框abcd(下简称方框)在光滑的水平地面上,其外侧套着一个与方框边长相同的U形金属框架MNPQ(下简称U形框)U形框与方框之间接触良好且无摩擦,两个金属杠每条边的质量均为m,每条边的电阻均为r. (1) 将方框固定不动,用力拉动u形框使它以
速度v0垂直 NQ边向右匀速运动,当U形框的MP端滑至方框的最右侧,如图乙所示时,方框上的bd两端的电势差为多大?此时方框的热功率为多大?
(2) 若方框不固定,给U形框垂直NQ边向右的初速度v0,如果U形框恰好不能与方框分离,则在
这一过程中两框架上产生的总热量为多少?
(3) 若方框不固定,给U形框垂直NQ边向右的初速度v(v> v0),U形框最终将与方框分离,如果
从U型框和方框不再接触开始,经过时间t方框最右侧和U型框最左侧距离为s,求金属框框分离后的速度各多大?
1.答案:C
解析:下滑过程有安培力做功,机械能不守恒;ab达到稳定速度,重力等于安培力,故C正确. 2.答案:A
解析:两种情况下产生的总热量,都等于金属棒的初动能. 3.答案:D
解析:铝环向右运动时,环内感应电流的磁场与磁铁产生相互作用,使环做减速运动,磁铁向右做加速运动,待相对静止后,系统向右做匀速运动,由I=(m+M)v,得v=I/(m+M),即为
2
磁铁的最大速度,环的最小速度,其动能的最小值为m/2·{I/(m+M)},铝环产生的最大热量
22
应为系统机械能的最大损失量,I2/2m-I/2(m+M)=MI/2m(m+M). 4.答案:C
解析:这是一道选用力学规律求解电磁感应的好题目,线框做的是变加速运动,不能用运动学公式求解,那么就应想到动能定理,设线框刚进出时速度为v1和v2,则第一阶段产生的热量
,第二阶段产生的热量Q2=mv/2,只要能找出v1和v2的关系就能找到答案,由动量定理可得
2
5.答案:0.5W
解析:由题意分析知,当砝码加速下落到速度最大时,砝码的合外力为零,此时R得到功率最大,为mg=BImaxL ①
2
Pmax=ImaxR②
2
由式①②得 Pmax=(mg/BL)R=0.5W 6.答案:4;0.28;0.08
解析:F安=(M-m)g,转化的内能=F安L
7.解析:(1)撤去F之前,设通过电阻R的电流为I,则金属杆受到的安培力大小F安=BIL=F.撤
2
去F之后,由P=IR知,当电阻R上消耗的电功率为P/4时,通过R的电流I'=I/2,则金属杆受到的安培力F’安=BI'L=F/2,方向水平向左,由牛顿第二定律得,
.方向水平向左.
(2)撤去F后,金属杆在与速度方向相反的安培力作用下,做减速运动直到停下。设匀速运动
22
时金属杆的速度为v,则I(R+r)=Fv,又P=IR,解得
由能量守恒可得,撤去F后,整个电路产生的热量
则电阻R上产生的焦耳热
8.解析:(1)U形框向右运动时,NQ边相当于电源,产生的感应电动势E=Blv0,当如图乙所示位置时,方框bd之间的电阻为
U形框连同方框构成的闭合电路的总电阻为闭合电路的总电流为
根据欧姆定律可知,bd两端的电势差为:Ubd=方框中的热功率为:
(2)在U形框向右运动的过程中,U形框和方框组成的系统所受外力为零,故系统动量守恒,设到达图示位置时具有共同的速度v,根据动量守恒定律
根据能量守恒定律,U形框和方框组成的系统损失的机械能等于在这一过程中两框架上产生的热量,即
(3)设U形框和方框不再接触时方框速度为v1, u形框的速度为v2:,根据动量守恒定律,有3mv=4mvI+3mv2……两框架脱离以后分别以各自的速度做匀速运动,经过时间t方框最右侧和U形框最左侧距离为s,即(v2-v1)t=s联立以上两式,解得